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Abstract

In this paper, we give a short introduction to the theory of
triangulated categories. We present the relevant definitions
and properties of triangulated categories which we use to in-
vestigate the Verdier localisation of triangulated categories.
Furthermore, we show that the stable category of a Frobe-
nius category is triangulated. By exhibiting the category of
chain complexes as a Frobenius category we may take its sta-
ble category, which turns out to coincide with the homotopy
category, thus showing that the homotopy category is trian-
gulated. Then, by Verdier localising the homotopy category
with respect to the subcategory of acyclic complexes (resp.
X -acyclic complexes), we obtain the derived category (resp.
X -relative derived category), proving it to be triangulated.
Finally, using the theory of triangulated categories, we prove
that the (Gorenstein) derived category of an abelian category
A is abelian if and only if A is semisimple.
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0 Introduction

The purpose of this paper is to present a short introduction to the theory of triangulated
categories. To this end, we knit together pieces of Thorsten Holm and Peter Jørgensens arti-
cle Triangulated categories: definitions, properties and examples (see [HJ10]), Dieter Happels
book Triangulated categories in the representation of finite dimensional algebras (see [Hap88])
and Amnon Neemans book Triangulated categories (see [Nee01]). Most of the proofs presented
can be found in at least one of these sources (unless cited otherwise). However we have added
detail to- and/or revised many of these proofs. Additionally, we provide an original proof,
when necessary. Also note that this paper is not completely self-contained as we omit the
proof of a few lemmas, especially in Section 2.

Triangulated categories were first invented by Jean-Louis Verdier in the early 1960’s in an
effort to axiomatize derived categories. They have since then spread far and wide within
mathematics and have become indispensable in many areas of mathematics including topol-
ogy, algebra, geometry and representation theory.

The success of triangulated categories can partially be attributed to the simple and rich
framework which they provide. Indeed, they allow us to talk about important categories
(such as the derived category) and their relations in an abstract and axiomatised setting, in
much the same manner as abelian categories. Furthermore, they provide a rich theory which
allows us to prove many statements which one might formulate within this special setting.

Triangulated categories, as presented in this text, do however face a number of prob-
lems, with the non-functoriality of the cone construction being the most problematic. There
are a number of alternative definitions of triangulated categories, stemming from stable ∞-
categories, dg-categories or stable derivators, which attempt to fix this problem (and succeed
in doing so). However, these definitions should not be thought of as a replacement for the
traditional definition, but rather as complementary, since they themselves have the problem
of being rather difficult to work with, in regards to constructing and working with examples.

In this text we will present the traditional definition of the triangulated category, as well
as its related constructions and properties, such as the Verdier localisation. Furthermore we
will look at the stable category of a Frobenius category and show it is triangulated. Finally,
we will present some important examples of triangulated categories, namely the homotopy
category and the derived category. We will also take a quick look at relative derived categories
and the special case of the Gorenstein derived category, as they can quite easily be defined
using the theory we build up.
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0.1 Preliminaries

It is assumed that the reader is accustomed to category theory and general homological
algebra. In this short section we state (without proof) a few of the important recurring
definitions and propositions used throughout this paper.

Definition 0.1.1 An abelian category is a category A which satisfies the axioms:
A1 A admits a zero object, finite products and finite coproducts.

A2 HomA(X, Y ) is an abelian group such that composition of morphisms is bilinear.

A3 Kernels and cokernels always exist.

A4 For any map f : X → Y , the natural morphism coim(f)→ im(f) is an isomorphism.
If A satisfies A1 and A2, then we say that A is an additive category.

Remark 0.1.2 In fact, A2 implies that finite products and finite coproducts coincide. A
partial converse is that if A admits finite coproducts, finite products and they coincide, then
HomA(X, Y ) can be equipped with a commutative monoid structure by defining f + g as

the composition X
∆−→ X ⊕ X f⊕g−−→ Y ⊕ Y ∇−→ Y , where ∆ (resp. ∇) is the diagonal (resp.

codiagonal).

Example 0.1.3 The category RMod of left R-modules over a ring R is abelian. The category
of chain complexes ch(A) (defined in Section 4.1) over an abelian category A is abelian.

Definition 0.1.4 An additive functor F : C → D is a functor between additive categories C
and D such that F is an abelian group homomorphism on the Hom sets.

Definition 0.1.5 In a category C, a pushout of two morphisms f : A → B, g : A → C is
an object P together with two morphisms f ′ : C → P , g′ : B → P with f ′g = g′f , such that
whenever there exists an object Y and two morphisms α : C → Y , β : B → Y such that
fβ = gα, then there exists a map θ : P → Y such that the following diagram commutes:

A C

B P

Y

f

g

f ′

g′
α

β

θ

Pushouts are unique up to isomorphism. The dual of a pushout is a pullback, however we
will only use pushouts throughout this paper.

Proposition 0.1.6 Let A be an abelian category. Then a commutative square, as in Defini-
tion 0.1.5, is a pushout square if and only if coker(g) ∼= coker(g′).

Definition 0.1.7 Let C be a category and ∼ a congruence relation on HomC(X, Y ) (i.e.
an equivalence relation such that f1 ∼ f2 and g1 ∼ g2 implies that g1f1 ∼ g2f2 for all
f1, f2 ∈ HomC(X, Y ) and g1, g2 ∈ HomC(Y, Z)). We define the quotient category C/ ∼ as
having the same objects as C and HomC/∼(X, Y ) := HomC(X, Y )/ ∼.

Proposition 0.1.8 If C is additive, ∼ a congruence relation on the Hom sets and if f1 ∼ f2

and g1 ∼ g2 implies that f1 + g1 ∼ f2 + g2, then the quotient category C/ ∼ is additive. In
this case we call ∼ an additive congruence relation.
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1 Triangulated categories

We begin by stating the basic definitions, giving intuitions and proving properties of trian-
gulated categories which will be useful in later sections. We closely follow Thorsten Holm
and Peter Jørgensens article Triangulated categories: definitions, properties and examples
([HJ10]). Most examples of triangulated categories are quite intricate and thus examples will
be omitted until Section 4.

1.1 Definition of a triangulated category

Let T be an additive category and Σ : T → T an additive functor with an inverse Σ−1 such
that ΣΣ−1 = Σ−1Σ = idT , where idT is the identity functor of T . We call such a functor
Σ an automorphism on T , but in the context of triangulated categories we call Σ the shift
functor on T .

Definition 1.1.1 A candidate triangle in T is a sequence X → Y → Z → ΣX in T .

A (iso-)morphism of candidate triangles is a triple (f, g, h) of (iso-)morphisms such that the
following diagram commutes

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h Σf

Definition 1.1.2 A triangulated category (T ,Σ,∆) is an additive category T equipped
with a shift functor Σ and a class ∆ of candidate triangles, called exact triangles (or simply
triangles for short), which satisfy the following axioms

TR0 Any candidate triangle isomorphic to an exact triangle is an exact triangle.

TR1 The candidate triangle X
idX−−→ X → 0→ ΣX is an exact triangle for any object X in

T .

TR2 For every f : X → Y in T there exists an exact triangle of the form X
f−→ Y → Z →

ΣX. We call the object Z the cone of f and sometimes denote it by cone(f).

TR3 If the candidate triangle X
u−→ Y

v−→ Z
w−→ ΣX is an exact triangle, then the candidate

triangle Y
v−→ Z

w−→ ΣX
−Σu−−→ ΣY must also be an exact triangle.

TR4 Any commutative diagram of the form

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f Σfg

where the rows are exact triangles, can be completed to a morphism of triangles (but
not necessarily uniquely!).
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TR5 Given three exact triangles X
u−→ Y → Z ′ → ΣX, Y

v−→ Z → X ′ → ΣY , X
vu−→

Z → Y ′ → ΣX there exists an exact triangle Z ′ → Y ′ → X ′ → ΣZ ′ which makes the
following diagram commute

X Y Z ′ ΣX

X Z Y ′ ΣX

Y Z X ′ ΣY

Z ′ Y ′ X ′ ΣZ ′

u

Σu

v

u

vu

v

We call ∆ the triangulation of T . In broad strokes, we should think of exact triangles as
corresponding to exact sequences in abelian categories. However, in abelian categories, exact
sequences are a natural trait of the underlying category, while triangulated categories require
the extra data, Σ and ∆. Thus we must note that triangulation is not necessarily unique and
an additive category may have several different triangulated structures [HJ10].

Axiom TR5 may seem a bit arbitrary at first glance, but the axiom is more intuitive than
one might initially think. Indeed, given two morphisms u : X → Y , v : Y → Z in T , we have
a morphism vu : X → Z and thus by TR2 we have three triangles X

u−→ Y → Z ′ → ΣX,
Y

v−→ Z → X ′ → ΣY , X
vu−→ Z → Y ′ → ΣX. Then TR4 says that we have two morphisms

f : Z ′ → Y ′ and g : Y ′ → X ′ such that the diagram

X Y Z ′ ΣX

X Z Y ′ ΣX

Y Z X ′ ΣY

Z ′ Y ′ X ′ ΣZ ′

u

Σu

v

u

vu

v

f

g

f g

commutes. Subsequently, TR5 allows us to choose f and g in such a way that the candidate

triangle Z ′
f−→ Y ′

g−→ X ′ → ΣZ ′ becomes an exact triangle. The resulting slogan is that we
may combine TR2 and TR4 in a way that is compatible with the exact structure.

Another way to understand TR5 is as encoding a version of the third isomorphism theo-
rem for triangulated categories. To elaborate, thinking of triangles as exact sequences would
suggest that Z ′ should be thought of as the quotient of X and Y , i.e. Y/X ∼= Z ′. Likewise,
Z/X ∼= Y ′ and, by TR5, Y ′/Z ′ ∼= X ′. Then we have (Z/X)/(Y/X) ∼= Y ′/Z ′ ∼= X ′ ∼= Z/Y ,
which notationally says the same as the third isomorphism theorem of, e.g., groups.
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1.2 Triangulated functors and triangulated subcategories

We will now present a few definitions which will aid us in describing relationships between
triangulated categories. These definitions will be indispensable for Section 2 and are in
general quite central for the study of triangulated categories.

Definition 1.2.1 A triangulated functor between triangulated categories T and T ′ is an
additive functor F : T → T ′ which commutes with the shift functor (i.e. there is a natural
isomorphism ΣF ∼= FΣ) and maps exact triangles to exact triangles.

We call a triangulated functor F : T → T ′ a triangle-equivalence if F is also an equiva-
lence of categories. In that case, T and T ′ are called triangle-equivalent.

Definition 1.2.2 An isomorphism-closed, full and additive subcategory C of a triangulated
category D is called a triangulated subcategory if ΣC = C (i.e. the shift functor on D is also
a shift functor on C) and if for any triangle X → Y → Z → ΣX in D with X, Y ∈ C, the
object Z is an object of C as well.

To demystify this definition, C is a triangulated subcategory of D if C is a triangulated
category with the triangulated structure of D. So, ΣC = C simply implies that C can inherit
the shift functor from D. The last condition of the definition is to ensure that if f : X → Y

is a morphism in C, then the induced triangle X
f−→ Y → Z → ΣX in D is also a triangle in

C. It is easily seen that C is then a triangulated category.

Definition 1.2.3 A triangulated subcategory C of D is called thick if whenever X, Y are
objects of D and X⊕Y is an object of C, then both X and Y are objects of C (i.e. C contains
all direct summands of its objects).

Definition 1.2.4 Let F : T → T ′ be a triangulated functor. The kernel of F , denoted
ker(F ), is the full subcategory of D whose objects consist of objects X ∈ T such that FX ∼= 0.

Lemma 1.2.5 The kernel of a triangulated functor F is a thick triangulated subcategory.

Proof. Obviously, ker(F ) is isomorphism-closed, full and additive. We also see that if X ∈ C,
then ΣX ∈ C since FX ∼= 0, so 0 ∼= Σ(FX) ∼= F (ΣX) by the natural isomorphism ΣF ∼= FΣ.

Furthermore, if f : X → Y is a morphism in C, then by applying F to X
f−→ Y → Z → ΣX

we obtain an exact triangle that is isomorphic to 0
0−→ 0→ FZ → 0, implying that FZ ∼= 0.

To prove the thickness of ker(F ), we simply note that, by additivity of F , we have that if
X ⊕ Y ∈ C, then 0 ∼= F (X ⊕ Y ) = FX ⊕ FY , which implies that FX ∼= 0 and FY ∼= 0.

Definition 1.2.6 A (covariant) cohomological functor H : T → A is an additive functor
from a triangulated category T to an abelian category A such that when X

u−→ Y
v−→ Z

w−→ ΣX
is an exact triangle, then the sequence

· · · → H(ΣiX)
H(Σiu)−−−−→ H(ΣiY )

H(Σiv)−−−−→ H(ΣiZ)
H(Σiw)−−−−→ H(Σi+1X)→ . . .

with i ∈ Z, is exact.

By duality we also have a notion of a contravariant cohomological functor.
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1.3 Properties of triangulated categories

Of course, these categories admit some nice properties of which we present the ones that we
deem important and which are generally useful when working with triangulated categories.
In our case, we will see them in use in Section 2 and Section 4.

Throughout this subsection we let T be a triangulated category with shift functor Σ.

Proposition 1.3.1 Let X
u−→ Y

v−→ Z
w−→ ΣX be an exact triangle in T . Then vu = 0 and

wv = 0.

Proof. On the strength of TR3 it suffices to show that vu = 0. By TR1 we have a commu-
tative diagram

Y Z ΣX ΣY

Z Z 0 ΣZ

v w −Σu

v

0 0

Σv

where the top row is an exact triangle by TR3. Using TR4 we may complete the diagram
such that 0 = Σ(v)(−Σu) = −Σ(vu), from which we deduce that vu = 0, because Σ is
additive.

Proposition 1.3.2 For any object T of T , HomT (T,−) is a cohomological functor.

Proof. In virtue of TR3 it is enough to show that, for some i ∈ Z,

HomT (T,ΣiX)
HomT (T,Σiu)−−−−−−−−→ HomT (T,ΣiY )

HomT (T,Σiv)−−−−−−−−→ HomT (T,ΣiZ)

is an exact sequence in Ab by showing that im(HomT (T,Σiu)) = ker(HomT (T,Σiv)). By
Proposition 1.2.1 we have Σi(v)Σi(u) = 0, so

HomT (T,Σiv)HomT (T,Σiu) = HomT (T,Σi(v)Σi(u)) = HomT (T, 0) = 0

showing that im(HomT (T,Σiu)) ⊆ ker(HomT (T,Σiv)).
Conversely, let f ∈ HomT (T,ΣiY ) such that Σi(v)f = 0 (i.e. f ∈ ker(HomT (T,Σiv)).

Then, using TR1 with TR3, we obtain a commutative diagram where the rows are triangles

Σ−iT 0 Σ−i+1T Σ−i+1T

Y Z ΣX ΣY

0 0 −id

Σ−if 0 Σ−i+1f

v w −Σu

This diagram can be completed using TR4, so that there exists h : Σ−i+1T → ΣX such that
−Σ(u)h = −Σ−i+1f , which implies that f = Σi(u)Σi−1(h). Hence f ∈ im(HomT (T,Σiu)),
and thus im(HomT (T,Σiu)) ⊇ ker(HomT (T,Σiv)) as desired.

In fact, by duality one can also show that HomT (−, T ) is a contravariant cohomological
functor.

Proposition 1.3.3 (Triangulated 5-lemma) Let (f, g, h) be a morphism of triangles. If any
two among f , g and h are isomorphisms, then so is the third.

6
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Proof. By TR3 we only need to prove the case where f and g are isomorphisms.
We are given f : X → X ′, g : Y → Y ′, h : Z → Z ′. Thus, we have the following diagram

X Y Z ΣX ΣY

X ′ Y ′ Z ′ ΣX ′ ΣY ′

f g h Σf Σg

on which we may apply HomT (Z ′,−), yielding the diagram

Hom(Z ′, X) Hom(Z ′, Y ) Hom(Z ′, Z) Hom(Z ′,ΣX) Hom(Z ′,ΣY )

Hom(Z ′, X ′) Hom(Z ′, Y ′) Hom(Z ′, Z ′) Hom(Z ′,ΣX ′) Hom(Z ′,ΣY ′)

Hom(Z′,f) Hom(Z′,g) Hom(Z′,h) Hom(Z′,Σf) Hom(Z′,Σg)

of which the rows are exact by Proposition 1.3.2. Since f and g are isomorphisms, Σf and
Σg are also isomorphisms. Thus, Hom(Z ′, f), Hom(Z ′, g), Hom(Z ′,Σf), Hom(Z ′,Σg) are all
isomorphisms. By applying the 5-lemma for abelian categories we deduce that Hom(Z ′, h)
is an isomorphism, which implies that there exists h−1 ∈ Hom(Z ′, Z) such that hh−1 = idZ′ .
Using the same argument but with the functor HomT (−, Z ′) we produce a left inverse h′−1

such that h′−1h = idZ . Finally, since h′−1 = h′−1(hh−1) = (h′−1h)h−1 = h−1, we see that h is
an isomorphism with inverse h−1.

Corollary 1.3.4 For any morphism f : X → Y , cone(f) is unique up to (non-canonical)
isomorphism. Furthermore, f is an isomorphism if and only if cone(f) ∼= 0.

Proof. The first statement follows from applying Proposition 1.3.3 to the following diagram

X Y Z ΣX

X Y Z ′ ΣX

The second statement is shown by using TR3 and TR4 to obtain the diagram on the left
and TR4 to obtain the diagram on the right:

X Y 0 ΣX X Y Z ΣX

X X 0 ΣX X X 0 ΣX

f f

f−1

By proposition 1.3.3 the constructed morphisms X → Y and Z → 0 are isomorphims. Thus
the ⇐ implication is a result of the left hand diagram and the ⇒ implication is a result of
the right hand diagram.

The converse of TR3 is usually a part of the definition of a triangulated category, but, as the
following lemma will show, it is not necessary as it can be deduced from the other axioms.

Lemma 1.3.5 If Y
v−→ Z

w−→ ΣX
−Σu−−→ ΣY is an exact triangle then X

u−→ Y
v−→ Z

w−→ ΣX is
also an exact triangle.

7
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Proof. Using TR2 on u : X → Y we have an exact triangle X
u−→ Y

v′−→ Z ′
w′−→ ΣX.

Repeated use of TR3 then yields the exact triangles ΣX
−Σu−−→ ΣY

−Σv−−→ ΣZ
−Σw−−−→ Σ2X and

ΣX
−Σu−−→ ΣY

−Σv′−−−→ ΣZ ′
−Σw′−−−→ Σ2X. Hence we may consider the following commutative

diagram wherein f is a consequence of TR4:

ΣX ΣY ΣZ Σ2X

ΣX ΣY ΣZ ′ Σ2X

Σu Σv Σw

Σu Σv′ Σw′

f

By Proposition 1.3.3 we know f to be an isomorphism, which implies that Σ−1f : Z → Z ′ is
an isomorphism. Hence the following is an isomorphism of triangles

X Y Z ΣX

X Y Z ′ ΣX

u v w

u v′ w′

Σ−1f

where the bottom row is an exact triangle by assumption. By TR0 we may thus conclude
that the top row is also an exact triangle.

We finish off this section with a rather nice characterization of the overlap of abelian and
triangulated categories.

Definition 1.3.6 We call an abelian category A semisimple if every short exact sequence
in A splits. Equivalently, A is semisimple if and only if A is abelian and every morphism
f : X → Y has a pseudo-inverse g : Y → X, i.e. fgf = f and gfg = g.

Lemma 1.3.7 Let X
u−→ Y

v−→ Z
w−→ ΣX be an exact triangle with w = 0. Then u is a split

monomorphism and v is a split epimorphism. We say that the triangle splits.

Proof. To show u is a split monomorphism, we will construct u′ : Y → X such that u′u = idX .
Since w = 0, the diagram

X Y Z ΣX

X X 0 ΣX

u v w

0

0

commutes, and by TR3 and TR4 it may be completed with a morphism u′ : Y → X which
has the desired properties.

The proof that v is a split epimorphism follows analogously.

This next theorem will prove particularly useful in Section 4, when we prove that the
derived category of A is abelian if and only if A is semi simple.

Theorem 1.3.8 Let T be a triangulated and abelian category. Then T is semisimple.

8
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Proof. Given any exact sequence 0 → X
f−→ Y

g−→ Z → 0, we wish to show that f is a split
monomorphism, since then the sequence will split by the splitting lemma.

By TR2 we have X
f−→ Y

u−→ V
v−→ ΣX, which TR3 turns into V

v−→ ΣX
Σf−→ ΣY

Σu−→ ΣV .

Applying Σ−1 then yields Σ−1V
Σ−1v−−−→ X

f−→ Y
u−→ V , from which we observe that fΣ−1(v) = 0,

by Proposition 1.3.1. But f is a monomorphism, so Σ−1v = 0, which implies that v = 0.

Hence, by Lemma 1.3.7, the exact triangle X
f−→ Y

u−→ V
v−→ ΣX splits and f is a split

monomorphism, as desired.

In fact, the convese statement holds true as well. Let Σ = idA be the shift functor and define

the candidate triangle X
f−→ Y

g−→ Z
h−→ X to be an exact triangle if and only if it is exact at

all three objects. Then one can prove that this structure is a triangulated structure on any
semisimple category A (see [Fri14]).

As an example, since the category of finite-dimensional vector spaces FinVectk over a
field k is semisimple, it follows that FinVectk is triangulated.

9
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2 The Verdier localisation of triangulated categories

One weakness of triangulated categories is their lack of constructions of new triangulated
categories from old ones. However, Verdier’s localisation theorem is one of the few theorems
that allows us to do just that: Construct new triangulated categories from a given triangulated
category D and any triangulated subcategory C ⊂ D.

As the name suggests, this theorem is due to Jean-Louis Verdier and says the following:

Verdier’s Localisation Theorem Let C be a triangulated subcategory of a triangulated
category D. Then there exists a triangulated category D/C, as well as a triangulated functor
Funiv : D → D/C, such that C is a subcategory of ker(Funiv), and Funiv is universal with the
following property:

If F : D → T is a triangulated functor such that C is a subcategory of ker(F ), then F

factors uniquely through D/C as D Funiv−−−→ D/C → T .

Our exposition will mainly follow Amnon Neemans Triangulated categories ([Nee01]), with
slight variation at times and a bit of inspiration from Fabian Lenzen ([Len15]).

We will not be giving the (quite technical) proof that D/C is triangulated. However we
will be showing how the category D/C is constructed and partly prove that it is an additive
category, as well as proving some lemmas here and there. Furthermore, we will construct the
functor Funiv and prove its universality. All proofs omitted can be found in [Nee01].

We will ignore any set-theoretic complications that could arise.

2.1 Construction and categoriality of D/C
The objects of D/C are simply the same objects as in D. The morphisms however are a bit
more intricate; we start by defining the following collection:

Definition 2.1.1 Let C be a triangulated subcategory of D. We define MorC as the collection
of morphisms f : X → Y in D for which cone(f) is an object of C.

This collection is well-defined since cone(f) always exists and is unique up to isomorphism.

Definition 2.1.2 In a triangulated category, a commutative square

P A

B Q

f

g

f ′

g′

is called a homotopy Cartesian if there exists a triangle P

( g
−f
)

−−−→ B ⊕A (f ′,g′)−−−→ Q→ ΣP. We
call P the homotopy pullback of f ′ and g′, and Q the homotopy pushout of f and g. We
denote the homotopy pullback by A×hQ B.

Remark 2.1.3 By TR2, homotopy pullbacks and pushouts always exist, and, by Corollary
1.2.4, homotopy pullbacks and pushouts are unique up to (non-canonical) isomorphism.

Lemma 2.1.4 The collection MorC has the following properties:

1. MorC contains all isomorphisms in D.

10
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2. If any two of the morphisms f , g, gf lie in MorC, then so does the third. In particular,
we may compose morphisms in MorC.

3. All homotopy pushouts and pullbacks of morphisms in MorC are contained in MorC.

Proof. 1. Note that C is additive, so 0 is an object of C. By Corollary 1.3.4 we have that
f is an isomorphism if and only if cone(f) ∼= 0, and since triangulated subcategories
are closed under isomorphisms, it follows that cone(f) ∈ C. Hence f ∈ MorC.

2. Using TR5 we have the following diagram in D:

X Y Z ′ ΣX

X Z Y ′ ΣY

Y Z X ′ ΣZ

Z ′ Y ′ X ′ ΣZ ′

f

gf

f ′

g

f ′ g′

g′

where the bottom row is a triangle. We need only show that if two of Z ′, Y ′, X ′ lie in
C, then so does the third. But this is true by TR3 and the condition on triangulated
subcategories that if Z ′ → Y ′ → X ′ → ΣZ ′ is in D with Z ′, Y ′ in C, then X ′ is in C.

3. By TR3 and uniqueness of cones, the result follows.

We will later see (in Lemma 2.2.2) that any triangulated functor whose kernel contains C (in
particular Funiv) maps the morphisms in MorC to isomorphisms. This justifies our use of the
term ’localisation’ as opposed to the term ’quotient’.1

Definition 2.1.5 For two objects X, Y of D, we let ĤomD(X, Y ) denote the collection of
diagrams of the form

W

X Y

f

where f ∈ MorC. We call such a diagram a roof.

With these morphism sets we actually obtain a new category, as this next lemma will show.

Definition/Lemma 2.1.6 We define composition (X ← W → Y )◦ (Y ← W ′ → Z) of roofs

in ĤomD(X, Y ) as given by the diagram

W W ×hY W ′ W ′

X Y Z

1Recall, the term ’localisation’ usually refers to the addition of inverses of certain morphisms such that
they become isomorphisms, while the term ’quotient’ usually refers to the identification of morphisms through
some congruence relation ∼ on the Hom sets.
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which can be shortened to (X ← W ×hY W ′ → Z).
This composition is associative and has the identity îdX := (X

idX←−− X
idX−−→ X).

By Remark 2.1.3, composition of roofs is unique up to isomorphism and thus well-defined.

Proof. Omitted. See [Nee01], Lemma 2.1.19 (pp. 80-81).

Definition/Lemma 2.1.7 Let � be the relation on ĤomD(X, Y ) defined by (X ← Z →
Y ) �(X ← Z ′ → Y ) if and only if there exists a roof (X ← W → Y ) and two morphisms
u : W → Z ′ and v : W → Z such that the diagram

Z ′

X W Y

Z

f ′ g′

f g

f ′′ g′′

u

v

commutes. Then � is a congruence relation. Furthermore, the morphisms u and v are

contained in MorC. We denote the equivalence class of (X
f←− W

g−→ Y ) by gf−1.

Proof. Omitted. See [Nee01], Lemma 2.1.14 and Lemma 2.1.18 (pp. 76-77 and pp. 80).

The notation gf−1 is quite natural since f ∈ MorC will become invertible in D/C, and so
we should think of gf−1 as a composition of morphisms. Furthermore, the existence of a
diagram like the one in Definition/Lemma 2.1.7 ’implies’ that

gf−1 = guu−1f−1 = g′′f ′′−1 = g′vv−1f ′−1 = g′f ′−1.

So it would be natural to identify (X ← Z → Y ) with (X ← Z ′ → Y ).

Indeed, this is how we define our morphisms in D/C:
Definition 2.1.8 As previously stated, the objects of D/C are simply the objects of D. The

morphism sets of D/C are defined as HomD/C(X, Y ) := ĤomD(X, Y )/ �.

The previous lemmas show that D/C is indeed a category, in fact, a quotient category.

2.2 Universality of Funiv and Properties of D/C
Since idX ∈ MorC, we define the functor Funiv : D → D/C as the following:

X 7→ X
(X

f−→ Y ) 7→ (X
idX←−− X

f−→ Y ).

Lemma 2.2.1 Let f, g : X → Y be morphisms in D. Then Funiv(f) = Funiv(g) if and only
if f − g : X → Y factors over a Z ∈ C as X → Z → Y .

Proof. Omitted. See [Nee01], Lemma 2.1.26 (pp. 84-85).

Thus Funiv(idZ) = 0 for Z ∈ C, which means that ker(Funiv) contains C, as desired.

Lemma 2.2.2 Any triangulated functor F : D → T whose kernel contains C maps any
morphism in MorC to an isomorphism. In particular, Funiv will have this property.
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Proof. Let f ∈ MorC. We apply F to a triangle X
f−→ Y → Z → ΣX where Z ∈ C. This yields

the triangle FX
Ff−→ FY → FZ → ΣFX which is isomorphic to FX

Ff−→ FY → 0→ ΣFX.
By Corollary 1.3.4, Ff is an isomorphism.

Lemma 2.2.3 Let gf−1 be a morphism in D/C. The following statements hold:

1. If g ∈ MorC, then gf−1 is invertible with the inverse (gf−1)−1 = fg−1.

2. We can write gf−1 as gf−1 = Funiv(g)Funiv(f)−1, where f ∈ MorC and g in D.

3. The morphism Funivf is an isomorphism if and only if f ∈ MorC.

Proof. 1. Notice that (X
f←− W

g−→ Y ) ◦ (Y
g←− W

f−→ X) = (X
fg′←− W ′ fg′−→ X), and

by Lemma 2.1.4 (statements 2 and 3), we have that fg′ ∈ MorC, so (X
fg′←− W ′ fg′−→

X) � (X
idX←−− X

idX−−→ X) by the following:

W ′

X W ′ X

X

fg′

fg′

fg′

fg′ fg′

Analogously, (X
f←− W

g−→ Y ) ◦ (Y
g←− W

f−→ X) = (Y
idY←−− Y

idY−−→ Y ).

2. This is clear, since (X
f←− W

idW−−→ W ) ◦ (W
idW←−− W

g−→ Y ) = (X
f←− W

g−→ Y ).

3. The ⇐ implication is just Lemma 2.2.2. Assume that Funivf = f id−1
X is an isomorphis.

Then its inverse is idXf
−1 = Funiv(idX)Funiv(f)−1, which implies that f ∈ MorC.

Lemma 2.2.4 The category D/C is additive, and the functor Funiv is additive.

Proof. A qualified guess for the zero object of D/C would be the zero object 0 of D. Indeed,
the following diagram shows that 0 id−1

X � 0f−1, i.e. that 0 is a terminal object:

W

X W 0

X

f 0

0f

f
0

Analogously, 0 is also an initial object.
For biproducts the obvious guess is X ⊕D/C Y = X ⊕D Y , which indeed does satisfy the

universal property for product and coproduct in D/C. Furthermore, Funiv respects these
coproducts. See [Nee01], Lemma 2.1.29 (pp. 87-89) for the long and quite technical proof
of these two facts. We also find that Funiv(0) ∼= 0, which means that Funiv is an additive
functor.

13



Magnus R. D. Hansen Triangulated categories 2021-06-11

It remains only to equip the Hom sets of D/C with an abelian group structure. By Remark
0.1.2, HomD/C(X, Y ) already has a commutative monoid structure given by the composition

f + g : X → X ⊕X f⊕g−−→ Y ⊕ Y → Y , which we will show is an abelian groups structure:
By Lemma 2.2.3 (2) we may write any morphism in D/C as Funiv(g)Funiv(f)−1 which has

the group inverse Funiv(−g)Funiv(f)−1. Indeed, since Funiv is an additive functor we have
that

Funiv(g)Funiv(f)−1 +Funiv(−g)Funiv(f)−1 = Funiv(g− g)Funiv(f)−1 = Funiv(0)Funiv(f)−1 = 0.

Thus HomD/C(X, Y ) has an abelian group structure.

Theorem 2.2.5 On the category D/C we define the shift functor Σ : D/C → D/C as:

X 7→ ΣDX

(X
f←− W

g−→ Y ) 7→ (ΣDX
ΣDf←−− ΣDW

ΣDg−−→ ΣDY )

where ΣD is the shift functor on D.
Let the exact triangles of D/C consist of the candidate triangles in D/C which are iso-

morphic to the image of an exact triangle in D under Funiv. The shift functor together with
the triangles exhibit D/C as a triangulated category.

Proof. Omitted. See [Nee01], Proof of Theorem 2.1.8 (pp.97-99).

Proposition 2.2.6 The functor Funiv : D → D/C is triangulated and satisfies the following
universal property: Every triangulated functor F : D → T sending MorC to isomorphisms (in

particular, functors whose kernel contain C) factors as D Funiv−−−→ D/C → T .

Proof. By definition of Funiv and Lemma 2.2.4, Funiv is triangulated. Let F : D → T be a
functor which maps all morphisms in MorC to isomorphisms. Then we may extend F to any

roof in ĤomD(X, Y ) in the obvious way. By applying F is two equivalent roofs we get

FZ ′

FX FW FY

FZ

∼=
∼=

∼=

∼=

∼=

We see that F sends two roofs, which are equivalent modulo �, to the same morphism.

Proposition 2.2.7 The functor Funiv maps a morphism X → Y to an isomorphism if and
only if for any triangle X → Y → Z → ΣX there exists Z ′ ∈ D such that Z ⊕ Z ′ ∈ C.

Proof. Omitted. See [Nee01], Proposition 2.1.35 (pp. 92-94).

By letting X = 0 we get that Z ∼= Y and Funiv(Y ) ∼= 0 if and only if there exists Z ′ ∈ D so
that Y ⊕ Z ′ ∈ C. Thus, ker(Funiv) is the smallest thick subcategory of D containing C.

14



Magnus R. D. Hansen Triangulated categories 2021-06-11

3 The stable category of a Frobenius category

In this section we will present the stable category of a Frobenius category, which bears many
fruitful examples of triangulated categories, many of which are especially useful in algebra.
The goal of the section is to construct the stable Frobenius category, whereafter we equip it
with a shift functor and a triangulation which, together, exhibit it as a triangulated category.
In the ensuing section we will look at the important example that is the homotopy category
of chain complexes which turns out to be a stable Frobenius category.

The exposition of this section primarily follows Triangulated categories in the representa-
tion of finite dimensional algebras by Dieter Happel ([Hap88]) but also takes inspiration and
a few proofs from Triangulated categories: definitions, properties and examples” by Thorsten
Holm and Peter Jørgensen ([HJ10]). However, as Happel is quite sparing with the details,
we present our own proofs for Lemma 3.1.7 and Proposition 3.2.4 as well as a lot of added
detail to most of the proofs, most notably in the proof of Theorem 3.3.2.

3.1 Definition of the stable category of a Frobenius category

Definition 3.1.1 Let A be a category with a notion of short exact sequences. We say that
an object X is an extension of Q by K if there exists a short exact sequence of the form

0→ K → X → Q→ 0.

A subcategory, which also has a notion of short exact sequences, B of A, is said to be closed
under extension if whenever Q and K are in B, then X is isomorphic to an object in B.

Definition 3.1.2 Let B be an additive, full and extension-closed subcategory of some abelian
category A. Let E be the class of all short exact sequences in A with entries in B.

We call the pair (B, E) an exact category.

Exact categories were first introduced by David Quillen, and they allow us to have a notion
of exactness in a category that is not necessarily abelian. Quillen worked out a long list of
axioms for exact categories, but it was then later shown that any exact category B can be
fully embedded into an abelian category A such that B is extension-closed and all short exact
sequences in B become actual short exact sequences in the ambient abelian category A.

Example 3.1.3 Any abelian category A together with the class E of all short exact sequences
in A is trivially an exact category as it can be embedded into itself, in the manner of Definition
3.1.2. This is the ’finest’ exact category in the sense that we cannot have more exact sequences
originating from A.

Example 3.1.4 Any abelian category A with the class E of split exact sequences in A is
also an exact category. This is trivially seen using Quillens original axioms but one can also
exhibit an ambient category. Indeed, by the Yoneda lemma, we have a fully faithful embedding
A → Fun(Aop,Ab), sending X 7→ Hom(−, X) which is full, extension-closed and satisfies the
condition that a sequence in Fun(Aop,Ab) is exact if and only if it is split exact in A. This is
the ’coarsest’ exact category in the sense that we cannot have fewer exact sequences originating
from A.
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Let (B, E) be an exact category. If 0 → X
u−→ Y

v−→ Z → 0 is in E , we call u a proper
monomorphism (or simply monic) and v a proper epimorphism (or simply epic).

We call an object P of B an E-projective object if whenever v : Y → Z is epic and
f : P → Z is any morphism in B, then there exists a morphism g : P → Y such that f = vg.

Dually, we call an object I of B an E-injective object if whenever u : X → Y is monic and
f : X → I is any morphism in B, then there exists a morphism g : Y → I such that f = gu.

We say that the exact category (B, E) has enough E-projectives (resp. enough E-injectives)
if for any object X in B there exists a proper epimorphism (resp. proper monomorphism)
v : P → X (resp. u : X → I).

These E-projective and E-injective behave almost exactly like regular projective and in-
jective objects in an abelian category, e.g. the splitting lemma holds in exact categories (the
proof is exactly the same).

Definition 3.1.5 A Frobenius category is an exact category with enough projectives, enough
injectives and where the classes of projectives and injectives coincide.

Example 3.1.6 (Frobenius algebras) Let K be a field. We call a finite-dimensional K-algebra
Λ a Frobenius algebra if there exists a linear form π : Λ→ K whose kernel does not contain
any non-zero left ideal of Λ. Then the category of finite-dimensional Λ-modules is a Frobenius
category [Far05].

Let (B, E) be a Frobenius category. For two morphisms f, g : X → Y in B we define the
relation ∼i by saying f ∼i g if and only if f − g factors over an injective object.

Lemma 3.1.7 The relation ∼i is an additive congruence relation.

Proof. Reflexivity and symmetry are clear. To see transitivity we note that if f − g = β1α1 :
X → I1 → Y factors over I1 and g − h = β2α2 : X → I2 → Y factors over I2, then
f −h = f − g+ g−h = β1α1 + β2α2 factors over I1⊕ I2 which is again injective. To see this,
let ιi : Ii → I1 ⊕ I2, i ∈ {1, 2}, be the canonical inclusion and πi : I1 ⊕ I2 → Ii be the the
canonical projection. Then

(β1π1 + β2π2)(ι1α1 + ι2α2) = β1π1ι1α1 + β1π1ι2α2 + β2π2ι1α1 + β2π2ι2α2

= β1α1 + 0 + 0 + β2α2 = f − h.

Next we need to show that if f1 ∼i f2 and g1 ∼i g2, then g1f1 ∼i g2f2 for all f1, f2 ∈
Hom(X, Y ) and g1, g2 ∈ Hom(Y, Z). Since g1(f1 − f2) + (g1 − g2)f2 factors over an injective
object (using the same argument as for transitivity), the claim is shown as follows:

g1(f1 − f2) + (g1 − g2)f2 = g1f1 − g1f2 + g1f2 − g2f2 = g1f1 − g2f2.

Lastly we need to show that f1 + g1 ∼i f2 + g2. But this follows from the fact that (f1 + g1)−
(f2 + g2) = (f1− f2) + (g1− g2) factors through an injective object, since f1− f2 and g1− g2

does (again, using the same argument as for transitivity).

Definition 3.1.8 Let (B, E) be a Frobenius category. The stable Frobenius category B of
(B, E) is the category which has the same objects as B and HomB(X, Y ) := HomB(X, Y )/ ∼i.
We denote the residue class of a morphism u : X → Y as u. Furthermore, B is additive, by
Proposition 0.1.8.
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Example 3.1.9 (Dual numbers) Let K be a field. The K-algebra Λ := K[x]/(x2) is a
Frobenius algebra with π(a + bx) = b. Then the category of finite-dimensional Λ-modules
is Frobenius and the only indecomposable objects are Λ and K, of which only Λ is injec-
tive. Thus, in the stable category, we have Λ ∼= 0, since idΛ ∼i 0. Hence, Hom(Λ,Λ) =
Hom(Λ, K) = Hom(K,Λ) = 0. However, Hom(K,K) 6= 0, since idK 6∼i 0.

3.2 Construction of the shift functor

Since a Frobenius category B has enough injectives, enough projectives and they coincide,
any object X of B admits a short exact sequence 0 → X

ιX−→ IX
πX−→ ZX → 0 (we will omit

the 0’s whenever we deem them redundant), where IX is injective (and projective).

Lemma 3.2.1 Given a morphism u : X → Y , there exist morphisms u : IX → IY and
uZ : ZX → ZY such that the following diagram commutes:

0 X IX ZX 0

0 Y IY ZY 0

ιX πX

u

ιY πY

u uZ

Proof. Since IY is injective, ιX is monic and ιY u : X → IY is a morphism there exists a
morphism u : IX → IY making the left square commute. In A, the map ιX exhibits ZX as a
cokernel, and since πXιX = 0 and πY uιX = πY ιY u = 0, it follows from the universal property
of cokernels that there exists a unique morphism uZ : ZX → ZY such that πY u = uZπX . B
is a full subcategory of A, so uZ will also be a morphism in B.

Lemma 3.2.2 The morphism uZ is independent of the chosen morphism u and independent
of the chosen representative of u in B. In particular, uZ is unique in B.

Proof. Let u and u′ be two liftings of u inducing uZ and u′Z respectively. Observe that

0 = ιY u− ιY u = uιX − u′ιX = (u− u′)ιX .

Since ZX is the cokernel of ιX and (u − u′)ιX = 0, it follows from the universal property of
cokernels that there exists a morphism σ : ZX → IY such that σπX = u−u′. By commutivity
we get

πY σπX = πY (u− u′) = πY u− πY u′ = uZπX − u′ZπX = (uZ − u′Z)πX .

Since πX is epic we may cancel πX from the right yielding πY σ = uZ − u′Z , which means
uZ − u′Z factors through an injective object. Hence uZ = u′Z in B, which proves the first
claim.

For the second claim, we wish to show that if u factors through an injective object, then
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so does uZ . Assume u = u′′u′ : X → I → Y factors through I, then we have the following:

X IX ZX

I II ZI

Y IY ZY

u′

u′′

u′

u′′

u′Z

u′′Z

uZu

where each row is exact and u′, u′′, u′Z , u′′Z are results of Lemma 3.2.1 and make the diagram
commute. We note that since I is injective the diagram splits, so the injective object II is
isomorphic to I ⊕ ZI , which we claim implies that ZI must also be injective. Indeed, if we
have a morphism A → ZI , a monomorphism A → A′ and if ZI ⊕ I is injective, then there
exists ZI ⊕ I → A′, and by composing with the canonical inclusion ZI → ZI ⊕ I the claim
follows. Hence, uZ factors through the injective object ZI .

Lemma 3.2.3 Let (B, E) be an exact category and let 0→ X
ι−→ I

π−→ Z → 0 and 0→ X
ι′−→

I ′
π′−→ Z ′ → 0 be in E, where I, I ′ are E-injectives. Then Z and Z ′ are isomorphic in B.

Proof. By Lemma 3.2.1 we have morphisms f : I → I ′, f ′ : I ′ → I and g : Z → Z ′,
g′ : Z ′ → Z such that the following diagram commutes:

0 X I Z 0

0 X I ′ Z ′ 0

0 X I Z 0

ι π

ι π

f

f ′

ι′

g

g′

π′

By commutivity of the left hand squares we obtain the equality

0 = ι− ι = f ′ι′ − ι = f ′fι− ι = (f ′f − idI)ι.

Since Z is the cokernel of ι, and (f ′f − idI)ι = 0, it follows from the universal property of
cokernels that there exists a morphism σ : Z → I such that σπ = f ′f − idI . By commutivity
of the right hand squares we obtain the equality

πσπ = π(f ′f − idI) = πf ′f − π = g′gπ − π = (g′g − idZ)π.

Since π is epic we may cancel π from the right, yielding πσ = g′g − idZ . Thus we observe
that the morphism g′g − idZ = πσ : Z → I → Z factors through an injective object and is
therefore the zero morphism in B. Hence we conclude that g′g = idZ .

Analogously we find that gg′ = idZ′ in B. Thus Z is isomorphic to Z ′ in B.

18



Magnus R. D. Hansen Triangulated categories 2021-06-11

Let 0 → X → I → Z → 0 be in E . From this point forward we will assume that there is a
bijection

γX : {X ′ | X ′ ∼= X,X ′ ∈ B} → {Z ′ | Z ′ ∼= Z,Z ′ ∈ B},
i.e. there is a bijection γX between the set of objects isomorphic to X and the set of objects
isomorphic to Z. Lemma 2.2.3 shows that this assumption does not depend on the chosen
sequence, 0→ X → I → Z → 0.

Under this assumption the shift functor Σ, defined below, will be an automorphism.
If we do not assume the existence of the bijection γX , the shift functor will still be an
autoequivalence2 and any two choices of shift functors will be isomorphic. For the proof of
this fact, we refer the reader to [HJ10], Lemma 8.8.

Lastly, it may seem like this assumption will exclude a lot of examples of stable Frobe-
nius categories, but it turns out that most applications and examples do in fact satisfy this
assumption.

Definition/Proposition 3.2.4 Let Σ : B → B be the shift functor defined as follows: For
any object X of B, let ΣX = γX(X) and for a morphism u : X → Y in B, let Σu = uZ.
Then Σ is an additive automorphism of B.

Proof. If u = idX we may choose u = idI which will induce uZ = idΣX . Likewise, if u =
gf : X → Y → Z we may choose uZ = gZfZ : ΣX → ΣY → ΣZ, which shows that Σ
is a functor. Furthermore, given u, v : X → Y we may take (u + v)Z = uZ + vZ , hence
Σ(u+ v) = uZ + vZ = Σ(u) + Σ(v), showing additivity.

We define the inverse functor Σ−1 : B → B as follows: for an object X of B we let
Σ−1X = γ−1

X (X), and by Lemma 3.2.1 and 3.2.2 the morphism uZ : γX(X) → γY (Y ) exists
and is uniquely determined by the morphism u : X → Y , hence Σ−1uZ = u is well-defined.
By construction we have ΣΣ−1 = Σ−1Σ = idB.

From now on we will write Σu instead of uZ , even though Σ technically is not defined on
morphisms in B.

3.3 Triangulation of the stable Frobenius category

With the shift functor constructed we can move on to defining the class exact triangles ∆ of
the stable Frobenius category B. We will prove they exhibit B as a triangulated category.

Let 0→ X → IX → ΣX → 0 be in E and u : X → Y a morphism in B. By Proposition 0.1.6
we then have the following diagram in the ambient abelian category A:

0 X IX ΣX 0

0 Y Cu ΣX 0

ιX πX

u

v

ū

w

where Cu is the pushout of ιX and u, in A. Since 0→ Y → Cu → ΣX → 0 is exact (because
ΣX ∼= coker(v) ∼= coker(ιX)) and B is closed under extension we obtain that Cu is also an

object of B. This yields a sequence X
u−→ Y

v−→ Cu
w−→ ΣX in B.

2Σ being an autoequivalence is sufficient for the definition of triangulated categories in some literatures.
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Definition 3.3.1 We call the sequence X
u−→ Y

v−→ Cu
w−→ ΣX in B a standard triangle.

We say that a candidate triangle X ′
u′−→ Y ′

v′−→ Z ′
w′−→ ΣX in B is an exact triangle if it is

isomorphic to a standard triangle. We denote the class of all exact triangles in B by ∆.

Thus we can finally state and prove the main theorem of this section.

Theorem 3.3.2 The category B equipped with Σ and ∆ is a triangulated category.

Before we get into the proof we will need a small category-theoretic lemma.

Lemma 3.3.3 Given a pushout of u : A → B and v : A → C and two morphisms f and g
from the pushout to some object X, then f = g if and only if fu′ = gu′ and fv′ = gv′, where
u′ and v′ are the induced maps.

Proof. The result follows simply from the following diagram, since the map P → X which
makes the diagram commute is unique.

A B

C P

X

v

u′

u

v′

fv′=gv′

fu′=gu′

g

f

Proof of 3.3.2. We check each axiom, TR0 through TR5.
TR0 ∆ is closed under isomorphism by definition.

TR1 Since idI factors through an injective object, namely I itself idI = idI idI : I → I → I,
we must have idI = 0 in B, which implies that I ∼= 0 in B. Then TR1 follows from the
following diagram:

X X I ΣX

X X 0 ΣX

∼=

since the upper row is a standard triangle.

TR2 This follows directly from the construction of the standard triangles.

TR3 Given the standard triangle X
u−→ Y

v−→ Cu
w−→ ΣX in B and letting Y → IY → ΣY be

in E , we may define a morphism f : Cu → IY by the pushout property, as follows:

X IX

Y Cu

IY

ιX

u ū

v

f

ιY

uI
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We note that ιY = fv and wv = 0, which yields the following commutative diagram:

0 0

0 Y Cu ΣX 0

0 IY IY ⊕ ΣX ΣX 0

ΣY ΣY

0 0

ιY

πY

( fw )

(πY ,−Σu )

( 1,0 )

v w

( 0
1 )

We note that the first two rows are exact, and since the cokernel of v and (1, 0) are equal
we know, by Proposition 0.1.6, that the upper left square is a pushout square, and thus the
middle column is exact. It follows from the definition of the standard triangles that the image

of Y
v−→ Cu

( fw )
−−→ IY ⊕ ΣX

( ιY ,−Σu )−−−−−−→ ΣY in B, which is exactly Y
v−→ Cu

w−→ ΣX
−Σu
−−→ ΣY , is

a standard triangle, as desired.

TR4 We first consider the standard triangles. Given two standard triangles X
u−→ Y

v−→
Cu

w−→ ΣX and X ′
u′−→ Y ′

v′−→ Cu′
w′−→ ΣX ′ in B, as well as two morphisms f : X → X ′ and

g : Y → Y ′ such that u′f = gu. I.e. we have the following commutative diagram:

X IX ΣX

Y Cu ΣX

X ′ IX′ ΣX ′

Y ′ Cu′ ΣX ′

ιX πX

u

v′ w′

v w

u

u′

ιX′

u′

πX′

f

g

Σf

Since u′f −gu = 0 we know that u′f −gu factors through an injective object I, and, together
with the universal property of injective objects, we obtain a morphism a : IX → I such that
the following diagram commutes:

X Y ′

IX I

u′f−gu

ιX a′

a

Letting α := a′a we get a morphism α : IX → Y ′ such that gu = u′f + αιX .
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By Lemma 3.2.1 we have maps f : IX → IX′ and Σf : ΣX → ΣX ′ such that fιX = ιX′f
and Σ(f)πX = πX′f . For the two morphisms v′g : Y → Cu′ and u′ f + v′α : IX → Cu′ we
have that

v′gu = v′(u′f + αιX) = v′u′f + v′αιX = u′ιX′f + v′αιX = u′ fιX + v′αιX = (u′ f + v′α)ιX .

Hence we may define h : Cu → Cu′ by the universal property of pushout squares

X IX

Y Cu

Cu′

ιX

u

v

u

h

u′ f+v′α

v′g

for which hv = v′g and hu = u′ f + v′α.
It remains to show that w′h = Σ(f)w. To this end it is enough to show that w′hv =

Σ(f)wv and w′hu = Σ(f)wu, by Lemma 3.3.3. Regarding the first equality we observe that
Σ(f)wv = 0 and w′hv = w′v′g = 0. The second equality is seen as follows (note: w′v′α = 0):

Σ(f)wu = Σ(f)πX = πX′f = w′u′ f = w′u′ f + w′v′α = w′(u′ f + v′α) = w′hu.

Hence we conclude that (f, g, h) is a morphism of triangles.

We now turn to the general case. Let X
u−→ Y

v−→ Z
w−→ ΣX and X ′

u′−→ Y ′
v′−→ Z ′

w′−→ ΣX ′

be exact triangles in B and let f : X → X ′ and g : Y → Y ′ be morphisms such that u′f = gu
in B. Since we have isomorphisms of standard triangles we have the following commutative
diagram:

X Y Z ΣX

X Y Cu ΣX

X ′ Y ′ Cu′ ΣX ′

X ′ Y ′ Z ′ ΣX ′

u v w

h1

u ṽ w̃

f

h2

w′v′u′

u′ ṽ′ w̃′

g h Σf

where h1 and h2 are isomorphisms. Then it is clear that (f, g, h−1
2 hh1) is a morphism of tri-

angles. Indeed, h−1
2 hh1v = h−1

2 hṽ = h−1
2 ṽ′g = v′g and w′h−1

2 hh1 = w̃′hh1 = Σfw̃h1 = Σfw.

TR5 It is enough to consider only the standard triangles.
We are given three standard triangles in B. I.e. we have the following three diagrams

X IX ΣX Y IY ΣY X IX ΣX

Y Z ′ ΣX Z X ′ ΣY Z Y ′ ΣX

ιX πX ιY πY ιX πX

vu

k k′

vuv

j j′

v

i i′

uu
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and we wish to construct f : Z ′ → Y ′ and g : Y ′ → X ′ such that the diagram in axiom TR5

commutes in B, and such that Z ′
f
−→ Y ′

g
−→ X ′ → ΣZ ′ is a standard triangle.

From the given data we can construct the following commutative diagram in A:

0 0

0 Y Z ′ ΣX 0

0 Y IZ′ M 0

ΣZ ′ ΣZ ′

0 0

i i′

ιZ′ i π′Y

pιZ′

where M is the pushout of i′ and ιZ′ . Since B is closed under extension we may consider the
diagram above in B. By Lemma 3.2.3 and by definition of the standard triangles we may
consider the right hand diagram below instead of the left hand diagram below

Y IY ΣY Y IZ′ M

Z X ′ ΣY Z X ′ ΣY

ιY πY

v v

j j′

ιZ′ i π′Y

v

j j′

φv′

where φ is an isomorphism. Since Σu is unique in B we may assume φp = Σu. We also note
that by the following diagram we have Σ(i)φπ′Y = πZ′

Y IZ′ M ΣY

Z ′ IZ′ ΣZ ′

ιZ′ i π′Y

i

ι′Z πZ′

φ

Σi

Since vuιX = kvu we may define f : Z ′ → Y ′ using the pushout property as shown on
the left hand of the following diagrams. Likewise, since jvu = v′ιZ′iu = v′ιZ′uιX , we may
define g : Y ′ → X ′ using the pushout property as shown on the right hand of the following
diagrams:

X IX X IX

Y Z ′ Z Y ′

Y ′ X ′

ιX

vu

k

vu

g

j

v′ιZ′u

ιX

u
vu

f

u

i

kv
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We now wish to show that the following diagram commutes and that the bottom row is
a standard triangle:

X Y Z ′ ΣX

X Z Y ′ ΣX

Y Z X ′ ΣY

Z ′ Y ′ X ′ ΣZ ′

u i i′

vu k k′

v j j′

f g Σ(i)j′

v f

u g Σu

i k Σi

Ignoring the squares that commute trivially, we see that the top middle square commutes by
the left hand pushout square above. The center square commutes by the right hand pushout
square above. The bottom left square and the bottom middle square are symmetric to the
upper middle square and the center square respectively.

Thus it remains to show that the top right square and the middle right square commute,
i.e. that k′f = i and j′g = Σ(u)k′.

For the first equality, we only need to show that k′fi = i′i and k′fu = i′u, by Lemma 3.3.3
with Z ′ as the pushout. Indeed, we get k′fi = k′kv = 0 = i′i and k′fu = k′vu = πX = i′u.

For the second equality, we again only need show that j′gk = Σ(u)k′k and j′gvu =
Σ(u)k′vu, by Lemma 3.3.3 with Y ′ as the pushout. Indeed, we get j′gk = j′j = 0 = Σ(u)k′k
and j′gvu = j′v′ιZ′u = φπ′Y ιZ′u = φpi′u = φpπX = Σ(u)πX = Σ(u)k′vu.

The very last fact to show is that Z ′
f
−→ Y ′

g
−→ X ′

Σ(i)j′

−−−→ ΣZ ′ is a standard triangle. In
the diagram below, the rectangle is a pushout (recall j = gk) and the left hand square is a
pushout. Therefore it follows from the pasting law of pushouts that the right hand square is
a pushout as well.

Y Z ′ IZ′

Z Y ′ X ′

ιZ′

f

g

v

i

v

k

Since Σ(i)j′v′ = Σ(i)φπ′Y = πZ′ , we thus have the following diagram where the left hand
square is a pushout:

Z ′ IZ′ ΣZ ′

Y ′ X ′ ΣZ ′

ιZ′ πZ′

f

g

v′

Σ(i)j′

which exhibits Z ′
f
−→ Y ′

g
−→ X ′

Σ(i)j′

−−−→ ΣZ ′ as a standard triangle and thus finishing this god
forsaken proof.

Thus, any exact category with coinciding projectives and injectives induces a triangulated
category. These categories (i.e. triangulated categories which are triangle-equivalent to a
stable Frobenius category) are called algebraic and are used a lot in algebra and representation
theory.
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4 Examples of triangulated categories

In this section we look the homotopy category and the derived category as examples of tri-
angulated categories. To finish off we will take a quick look at the relative derived categories
and the special case of the Gorenstein derived category. All these examples stem from the
category of chain complexes, but not every triangulated category is ’of this form’. An impor-
tant example, not ’of this form’, that we omit is the stable module category (and in particular
the stable module category over a Frobenius algebra) and can be found in [Hap88].

Subsection 4.2 follows the exposition of Happel, but this section is otherwise mostly our
own craft. Especially (because Happel leaves a lot of work to the reader) we give our own
proof of Proposition 4.2.2 and Lemma 4.2.3. Furthermore, all lemmas, propositions and
theorems, except Theorem 4.3.4, of Subsection 4.3 are our own with help from Henrik Holm
and from [Di+14].

4.1 Recalling the definitions

Let A be an abelian category.

Definition 4.1.1 A chain complex, X• in A is a sequence in A

. . .
d3−→ X2

d2−→ X1
d1−→ X0

d0−→ X−1
d−1−−→ . . .

such that didi+1 = 0 for all i ∈ Z. We call the maps di the differentials of X•.
A (iso-)morphism of chain complexes f• : X• → Y• is a family of (iso-)morphisms fi :

Xi → Yi, such that the diagram

. . . X2 X1 X0 X−1 . . .

. . . Y2 Y1 Y0 Y−1 . . .

dX0dX1dX2

dY2 dY1 dY0

f2 f1 f0 f−1

commutes.
The category whose objects are chain complexes in A and whose morphisms are morphisms

of chain complexes is called the category of chain complexes and is denoted ch(A).

The full subcategory of left bounded (resp. right bounded, resp. bounded) chain complexes
(i.e. the objects are chain complexes such that Xi = 0 for all i > j (resp. i < j, resp. |i| < j)
for some j ∈ Z) is denoted ch+(A) (resp. ch−(A), resp. chb(A)). It is well known that these
categories of chain complexes are abelian categories (See, [Wei94] Theorem 1.2.3).

We also remind the reader of the existence of the additive functors Hi defined by Hi(X•) =
coker(im(di+1)→ ker(di)), called the homology functors. We say X• is acyclic if Hi(X•) ∼= 0
for all i ∈ Z.

Two morphisms of chain complexes f• and g• from X• to Y• are said to be chain homotopic
if there exists a sequence of morphisms hi : Xi → Yi+1 such that fi − gi = dYi+1hi + hi−1d

X
i .

We say that f• is null-homotopic if it is homotopic to the zero morphism.
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Proposition/Definition 4.1.2 The relation ’f• is chain homotopic to g•’, denoted f• ∼h g•,
is an additive congruence relation.

We define the homotopy category K(A) as the quotient category ch(A)/ ∼h. In particular,
K(A) is an additive category.

Proof. Omitted. See [HJ10], Proposition 1.7.

For the sake of completion we will give a rather vague definition of the derived category.
We call a morphism X• → Y• of chain complexes a quasi-isomorphism if the induced

morphism of homology Hi(X•)→ Hi(Y•) is an isomorphism for all i ∈ Z.

”Definition” 4.1.3 The derived category D(A) is the category ch(A) localized with respect
to quasi-isomorphisms, i.e. quasi-isomorphisms become actual isomorphisms.

Later in this section we will rigidify this definition by using Verdiers localisation theorem.

4.2 Triangulation of the homotopy category

We now proceed to constructing the class of exact sequences in ch(A) (as well as ch+(A),
ch−(A), chb(A)), which will exhibit it (them) as a Frobenius category, whereafter we show
that the corresponding stable category coincides with the homotopy category K(A). From
this point forward we simply let ch(A) represent any of the four chain complex categories,
ch(A), ch+(A), ch−(A), chb(A), since everything unfolds in the exact same manner for any
one of the four.

Let E be the class of sequences 0→ X•
f•−→ Y•

g•−→ Z• → 0 in ch(A) for which 0→ Xi
fi−→

Yi
gi−→ Zi → 0 is split exact for all i ∈ Z. For an object X in A and some i ∈ Z we define

Ii(X)• as the complex with X in the i’th and i+ 1’th degree of the complex and 0 otherwise:

. . . 0 X X 0 0 . . .
i i−2i−1i+1i+2

Likewise, we define Pi(X)• as the complex with X in the i’th and i − 1’th position of the
complex and 0 otherwise:

. . . 0 0 X X 0 . . .
i i−2i−1i+1i+2

It is then easily seen that Ii(X)• is an E-injective object and Pi(X)• is an E-projective
object. We will later see that any E-injective (resp. E-projective) is direct summand of an
injective object of the form

⊕
i∈Z Ii(Xi)• (resp.

⊕
i∈Z Pi(Xi)•) where Xi ∈ A, from which we

immediately see that the E-injective and E-projective objects coincide.
Given a complex X• = (Xi, di), we let I(X•)• :=

⊕
i∈Z Ii(Xi), and ΣX• := (Xi−1,−dX•i−1).

We define ιX• : X• → I(X•)• by ιXi
: Xi → Xi ⊕ Xi−1 such that ιXi

=
(

idXi
di

)
, which has

the left inverse (idXi
, 0). Likewise we define πX• : I(X•)• → ΣX• by πXi

: Xi ⊕Xi−1 → Xi−1

such that πXi
= (−di, idXi−1

) which has the right inverse
(

0
idXi−1

)
. Since πXi

ιXi
= 0 we thus

have an E-exact sequence:

0→ X•
ιX•−−→ I(X•)•

πX•−−→ ΣX• → 0,
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which exhibits ιX• as monic and πX• as epic and which shows that we have enough E-injectives
as well as enough E-projectives, since any complex X• can be realised as ΣY• for some complex
Y•, namely Yi = Xi+1 and dY•i = −dX•i+1.

This also shows that all E-injectives are direct summands of E-injective objects of the form⊕
i∈Z Ii(Xi)• since if E• is any E-injective object, then 0→ E• →

⊕
i∈Z Ii(Ei)• → ΣE• → 0

splits, so
⊕

i∈Z Ii(Ei)•
∼= E• ⊕ ΣE•.

All in all we have proved the following proposition:

Proposition 4.2.1 The category (ch(A), E) is a Frobenius category.

Thus we may take the stable Frobenius category of (ch(A), E), but, as the following propo-
sition will show, this yields exactly the homotopy category K(A).

Proposition 4.2.2 Let f• ∈ Homch(A)(X•, Y•). Then f• factors through an E-injective (i.e.
f ∼i 0) if and only if f• is null-homotopic.

Proof. Assume f• factors through an E-injective I• as f• = π•ι• : X• → I• → Y•. We may
assume that I• =

⊕
i∈Z Ii(Mi) for someMi ∈ A with differential dIi : Mi⊕Mi−1 →Mi−1⊕Mi−2

given by dIi =
(

0 idMi−1

0 0

)
, since if f• factors over an arbitrary injective object E•, then it

factors over the sum E• ⊕ ΣE• ∼=
⊕

i∈Z Ii(Mi).
Note that in order for ιi = (

ai
bi ) and πi = (vi, wi) to be chain maps (i.e. commute with

the differentials) the following equalities must hold:

ai−1d
X
i = bi, bi−1d

X
i = 0, dYi wi = vi−1, dYi vi = 0.

Let bIi : Mi−1 ⊕Mi−2 → Mi ⊕Mi−1 be given by
(

0 0
idMi−1

0

)
. Then by letting hi : Xi → Yi+1

be given by hi = πi+1b
I
i+1ιi = wi+1ai we see that

dYi+1hi + hi−1d
X
i = dYi+1wi+1ai + wiai−1d

X
i = viai + wibi = πiιi = fi.

Hence f is null-homotopic.
Conversely, assume f• : X• → Y• is null-homotopic, i.e. fi = dYi+1hi + hi−1d

X
i , where

hi : Xi → Yi+1. Then f• factors through P (Y•)• :=
⊕

i∈Z Pi(Yi) as

Xi Yi+1 ⊕ Yi Yi

Xi−1 Yi ⊕ Yi−1 Yi−1

dXi

(
0 idYi
0 0

)
dYi

ιi πi

ιi−1 πi−1

where ιi =
(

hi
hi−1d

X
i

)
and πi = (dYi+1, idYi). Indeed, the diagram commutes and most impor-

tantly we have that πiιi = dYi+1hi + hi−1d
X
i = fi, as desired.

Thus ch(A) = K(A), which means that K(A) is triangulated! Note that the shift functor on
an object X• is usually denoted by X•[1]. We will use this notation from this point forward.

With this definition of K(A), we can give a very useful characterization of its cones:

Lemma 4.2.3 Given a triangle X•
f•−→ Y• → cone(f•)→ X•[1] in K(A), the object cone(f•)

is isomorphic to the object X•[1]⊕ Y•, with the differentials d
X•[1]⊕Y•
i =

(
d
X•[1]
i 0

fi−1 dYi

)
.
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Proof. Recall that cone(f•) in a Frobenius category is the pushout of f• : X• → Y• and
ιX : X• → I(X•)•. Since pushouts are unique up to isomorphism we simply need to show
that X•[1]⊕ Y• is a pushout of f• and ιX . We consider the following diagram:

0 X• I(X•)• X•[1] 0

0 Y• X•[1]⊕ Y• X•[1] 0

ιX πX

( 0
1 ) ( 1,0 )

f• f•

It is obvious that the rows are E-exact. We see that by letting f i : Xi⊕Xi−1 → Xi−1⊕Yi be

given by f i =
(
−dXi idXi−1

fi 0

)
, the diagram commutes. We need to check that f • is a morphism

of chain complexes, and indeed, (note, since f• is a chain map we have fi−1d
X
i = dYi fi)

d
X•[1]⊕Y•
i f i =

(
−dXi−1 0

fi−1 dYi

)(
−dXi idXi−1

fi 0

)
=
(

(−dXi−1)(−dXi ) −dXi−1

fi−1(−dXi )+dYi fi fi−1

)
=
(

0 −dXi−1

0 fi−1

)
=
(
−dXi−1 idXi−2

fi−1 0

)(
0 idXi−1

0 0

)
= f i−1d

I(X•)•
i .

Finally, since the cokernels of ιX and ( 0
1 ) are isomorphic, it follows from Proposition 0.1.6

that the left square of the diagram is a pushout square, as desired.

This justifies the notation cone(f•), since this is exactly the mapping cone from homological
algebra. One can then see that this triangulated structure coincides with the one presented
in [HJ10].

These next lemmas will aid us in achieving a rigorous definition of the derived category.

Lemma 4.2.4 If f• and g• are homotopic, then they induce the same map on homology. In
particular, the homology functors Hi : K(A)→ A are well defined on K(A).

Proof. By Proposition 4.2.2, f• − g• factors over an injective object which is acyclic. Hence
the f• − g• induces the zero map on homology, and since Hi is additive we get Hi(f• − g•) =
Hi(f•)−Hi(g•) = 0, i.e. Hi(f•) = Hi(g•).

Hence this next lemma holds true in both ch(A) and K(A).

Lemma 4.2.5 Let f• : X• → Y• be a morphism in ch(A) (or in K(A)). Then f• is a
quasi-isomorphism if and only if cone(f) is acyclic.

Proof. We have a natural short exact sequence 0→ Y•
( 0

1 )
−−→ cone(f)

(1,0)−−→ X•[1]→ 0 in ch(A)
(or K(A)) which induces a long exact sequence of homology:

· · · → Hi+1(Y•)→ Hi+1(cone(f))→ Hi(X•)→ Hi(Y•)→ Hi(cone(f))→ . . . ,

from which the desired result follows.
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4.3 Triangulation of the derived and relatively derived category

With the homotopy category investigated, we can use this information to define the derived
category. To this end we need the following lemma.

Lemma 4.3.1 The full subcategory N (A) of K(A) consisting of acyclic chain complexes
is a triangulated subcategory of K(A). Furthermore, the collection MorN (A) consists of all
quasi-isomorphisms.

Proof. It is immediate that N (A) is full and isomorphism-closed, and that N (A)[1] = N (A).
Since N (A) is full, additivity of N (A) follows from the fact that 0 is acyclic and that if X,
Y are acyclic, then X ⊕ Y is also acyclic.

Let X
f−→ Y → Z → X[1] be a triangle in K(A) with X and Y acyclic. Then f must be

a quasi-isomorphism and hence, by Lemma 4.2.5, cone(f) is acyclic.
It remains to show that MorN (A) consists of all quasi-isomorphisms, but this fact follows

immediately from Lemma 4.2.5.

Thus the following definition of the derived category as the Verdier localisation of K(A) by
N (A) is well-defined and shows that D(A) is triangulated.

Definition 4.3.2 The derived category of an abelian category A is defined as the Verdier
localisation D(A) := K(A)/N (A).

It is easy to see that this definition coincides with one of those presented in [HJ10] (pp.

25-26) (namely D̃(A)). Furthermore, the triangulated structure also coincides with the one
presented in [HJ10] (Definition 7.16).

In fact, one can prove that any short exact sequence in A induces a triangle in D(A),
see [HJ10]. This further justifies the idea that triangles play the role of exact sequences in
abelian categories, as described in Subsection 1.1.

Next, we prove a well known fact which will be useful for the following theorem.

Proposition 4.3.3 There exists a fully faithful embedding A → D(A).

Proof. There is a natural fully faithful embedding E : A → K(A) sending A 7→ [· · · → 0 →
A→ 0→ · · · ], so we may consider A as the image E(A) of this embedding.

We claim that the restricted functor Funiv : E(A) → D(A) from Verdiers localisation
theorem is fully faithful, so FunivE is the desired functor. Indeed, Funiv is clearly injective on

the Hom sets. For surjectivity, let A
f←− W•

g−→ B be in HomD(A)(A,B) (with A,B ∈ E(A)).

Then this roof is equivalent to the roof A
idA←−− W•

ϕ−→ B, where ϕ = H0(g)H0(f)−1 (recall, f
is a quasi-isomorphism). Indeed, let τ≥0W• be defined by τ≥0Wi = Wi for i > 0, τ≥0W0 =
ker(dW0 ) and τ≥0Wi = 0 for i < 0. Then the diagram

W•

A τ≥0W• B

A

f

ϕ

g
ι

h

h

ϕh
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commutes, where ι is the natural inclusion and h is defined by h0 : ker(dW0 )→ H0(W•)
H0(f)−−−→

A and hi = 0 otherwise, both of which are quasi-isomorphisms.

We say that a complex X• = (Xi, d
X
i ) in K(A) (or in ch(A)) is cyclic if every differential dXi is

the zero morphism. Let us write K0(A) for the full subcategory of K(A) consisting of cyclic
complexes. It is easily seen that K0(A) is just Z copies of A , so it is equivalent to Fun(Z,A),
where we consider Z as a discrete category on the underlying set (i.e. no morphisms, except
the identity). Let Fh : K(A)→ K0(A) be the functor defined by Fh((Xi, d

X
i )) = (Hi(X•), 0)

and Fh(f : X• → Y•) = Hi(f)•. Since Fh maps quasi-isomorphisms to isomorphisms, by

Verdiers localisation theorem, Fh factors through D(A) as K(A)
Fu−→ D(A)

Fk−→ K0(A).

Theorem 4.3.4 Let A be an abelian category. The following are equivalent:

� D(A) is abelian

� A is semisimple

� D(A) is equivalent to Fun(Z,A), where we consider Z as a discrete category.

In the following proof, the implication (2) is due to [IM88] with only minor changes to fit our
course of action. The general composition of the proof is due to [b)].

Proof. The plan for the proof is showing the following implications:

D(A) is abelian

A is semisimple D(A) is equivalent to Fun(Z,A)

(1)

(2)

(3)

(1) Firstly, assume that D(A) is abelian. Then by Theorem 1.2.8, D(A) is semisimple,
which means that every morphism f has a pseudo-inverse. By Proposition 4.3.3, there is a
fully faithful embedding of A into D(A), and it therefore follows that every morphism f ′ in
A has a pseudo-inverse, which means that A is semisimple.

(2) Secondly, assume that A is semisimple. We will show D(A) is equivalent to K0(A)
(which is equivalent to Fun(Z,A)), by showing that the functor Fk, defined above, is an
equivalence of categories. Let X• = (Xi, d

X
i ) be any complex in K(A) and set Bi = Im(dXi+1)

and Zi = ker(dXi ). Then we have two natural short exact sequences in A:

0→ Zi → Xi → Bi−1 → 0,

0→ Bi → Zi → Hi(X•)→ 0.

SinceA is semisimple, we therefore have that (Xi, d
X
i ) ∼= (Bi⊕Hi(X•)⊕Bi−1, d

Bi⊕Hi(X•)⊕Bi−1

i ),

where d
Bi⊕Hi(X•)⊕Bi−1

i =
(

0 0 idBi−1

0 0 0
0 0 0

)
. We let Xi represent Bi ⊕Hi(X•)⊕Bi−1.

Thus we can see that fX : (Xi, d
X
i ) → (Hi(X•), 0) given by fXi = (0, idHi(X), 0) and

gX : (Hi(X), 0)→ (X i, di) given by gXi =
(

0
idHi(X)

0

)
are morphisms in K(A).

Let F` : K0(A) → D(A) be defined as the composition of the embedding Fι : K0(A) →
K(A) with the functor Fu (defined above). It is clear that FkF` = FhFι is naturally isomorphic
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to idK0(A). Conversely, F`Fk : D(A)→ D(A) maps (Xi, d
A
i ) to (Hi(X•), 0). Since fX : X• →

F`(Fk(X•)) is an isomorphism with inverse gX in D(A), it follows that {fX}X∈D(A) is a
natural isomorphism between idD(A) and F`Fk, with inverse {gX}X∈D(A).

(3) Lastly, if D(A) is equivalent to Fun(Z,A), then obviously D(A) is abelian since
Fun(Z,A) is abelian.

Example 4.3.5 The category of finite-dimensional vector spaces FinVectk over a field k is
semisimple. Hence D(FinVectk) is equivalent to Fun(Z,FinVectk) and is abelian.

We finish off this paper by giving a quick and dirty way of defining the relative derived
category, and consequently the Gorenstein derived category.

Let X be a subcategory of the abelian category A. We say a complex A• ∈ ch(A) is
X -acyclic if the induced chain complex HomA(X,A•) in ch(Ab) is acyclic for any X ∈ X .
A morphism f• : A• → B• in ch(A) is called an X -quasi-isomorphism if the induced map
HomA(X, f•) : HomA(X,A•) → HomA(X,B•) is a quasi-isomorphism in ch(Ab) for any
X ∈ X .

Lemma 4.3.6 Let f• : A• → B• be a morphism in K(A) (or ch(A)). Then f• is an X -quasi-
isomorphism if and only if cone(f) is X -acyclic.

Proof. Let X ∈ X . The natural exact sequence 0 → B• → cone(f) → A•[1] → 0 is degree-
wise split exact, so by applying HomA(X,−) to it we will obtain another short exact sequence
0 → HomA(X,B•) → HomA(X, cone(f)) → HomA(X,A•) → 0 in ch(Ab) which induces a
long exact sequence of homology:

· · · → Hi(HomA(X,A•))→ Hi(HomA(X,B•))→ Hi(HomA(X, cone(f)))→ . . . ,

from which the desired result follows.

Proposition 4.3.7 Let KX (A) denote the full subcategory of K(A) consisting of X -acyclic
complexes. Then KX (A) is a triangulated subcategory of K(A) and MorKX (A) consists of all
X -quasi-isomorphisms.

Proof. It is immediate that KX (A) is an additive (the Hom functor is additive), full and
isomorphism-closed subcategory, and that KX (A)[1] = KX (A).

It follows from Lemma 4.3.6 that if A• → B• → C• → X•[1] is a triangle in K(A) with
A•, B• ∈ KX (A), then C• ∈ KX (A).

Lastly, the fact that MorKX (A) consists of all X -quasi-isomorphisms is immediate from
Lemma 4.3.6.

Thus we may use Verdiers localisation theorem to obtain the X -relative derived category of
A, denoted DX (A).

Definition 4.3.8 The X -relative derived category DX (A) of A is defined as the Verdier
localisation, DX (A) := K(A)/KX (A).

Remark 4.3.9 If A has enough projectives and if we let X be the class of all projective
objects, then one can show that A• is X -acyclic if and only if A• is acyclic in the usual
sense (since HomA(X,−) is then an exact functor). Thus, in this case we recover the derived
category D(A) = K(A)/KX (A) = K(A)/N (A) (see, [Di+14]).
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An important example of a relative derived category is the Gorenstein derived category. For
this we need the notion of Gorenstein projective complexes.

Definition 4.3.10 An acyclic complex of projective objects P• in ch(A) is called totally
acyclic if the induced complex Hom(P•, Q) is acyclic for any projective object Q.

An object G in A is called Gorenstein projective if there exists a totally acyclic complex
of projectives P• such that Im(Pi → Pi−1) ∼= G for some i ∈ Z.

We denote the full subcategory of A consisting of Gorenstein projective objects as GP-A.
We have a dual notion of Gorenstein injective objects and a full subcategory GI-A con-

sisting of these objects. However we will only consider GP-A.
One may consider the GP-relative derived category which leads us to the definition of the

Gorenstein derived category:

Definition 4.3.11 The Gorenstein derived category DGP(A) of A is the GP-relative derived
category of A.

Example 4.3.13 If all objects of A has finite projective dimension (i.e. their projective
resolution has finite length) then the Gorenstein projective objects and the regular projective
objects coincide (see, [GZ10]).

Remark 4.3.14 Example 4.3.13 and Remark 4.3.9 tells us that if every object of A has
finite projective dimension, then D(A) ∼= DGP(A). In particular, if A is semisimple, we have
D(A) ∼= DGP(A), since every object has projective dimension 0.

However, this next proposition holds true for any abelian category A.

Proposition 4.3.14 There exists a fully faithful embedding A → DGP(A).

Proof. The proof is analogous to that of Proposition 4.3.3 and can be found in [GZ10].

Hence we can prove the Gorenstein version of Theorem 4.3.4:

Theorem 4.3.15 The Gorenstein derived category DGP(A) is abelian if and only if A is
semisimple. In this case we also have that DGP(A) ∼= Fun(Z,A).

Proof. Assume DGP(A) is abelian. Then DGP(A) is semisimple by Theorem 1.2.8, and every
morphism f has a pseudo-inverse. By Proposition 4.3.14, there is a fully faithful embedding
A → DGP(A), and it therefore follows that every morphism f ′ in A has a pseudo-inverse.
Hence A is semisimple.

Conversely, assume A is semisimple. Then DGP(A) ∼= D(A) ∼= Fun(Z,A), by Remark
4.3.15 and Theorem 4.3.4.

In other words, abelian Gorenstein derived categories are pretty boring.

4.4 Final remarks

We have only just scratched the surface of the theory of triangulated categories, but we can
already see its power. With a bit of effort, we were able to give the important categories
K(A) and D(A) a nice structure, which works as a framework to aid in further studies of
these (any many more) categories (e.g. Theorem 4.3.4). Futhermore, with minimal effort, we
were able to generalize the derived category to the relative derived category.

We refer the interested reader to [Nee01] for more general theory of triangulated categories.
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