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This is a brief survey of two papers.

12
We cover the nature of di-

visors on graphs and show part of the proof of a graph-theoretic

counterpart of the classic Riemann-Roch theorem. Furthermore, the

theory is applied to give a new volumetric version of Kirchoff’s

theorem.

1 DOLLAR DEBT GAME
Consider any connected graph, G, with an integer weight at each

vertex, 𝑣 ∈ 𝑉 (𝐺). Think of the weight as the amount of dollars (or

debt) the vertex has. For any vertex, 𝑣 , we allow two legal moves:

Either 𝑣 takes a dollar from each neighbor,𝑤 (i.e. 𝑣 ,𝑤 connected by

an edge 𝑒 = 𝑣𝑤 ∈ 𝐸 (𝐺)), trough each edge. Or 𝑣 gives a dollar to

each neighbor, through each edge. The goal of the game is then to

get every vertex out of debt. The natural question is of course; for

which configurations is the game winnable?

(−2) (0) (−2) (1)

(1) (3) (−1) (4)

bottom left gives

Figure 1: Example of legal move.

First we need some notation. We denote the genus of any graph,

𝐺 , by 𝑔 := |𝐸 (𝐺) | − |𝑉 (𝐺) | + 1 and define the degree, deg(𝐷), of
a vertex-weighted graph, 𝐷 , as the sum of all the weights (i.e. the

total number of dollars). Then we have the following:

Theorem 1.1. If deg(𝐷) ≥ 𝑔, then the game is always winnable.

Furthermore, if deg(𝐷) ≤ 𝑔−1, then there exists some configuration

for which the game is not winnable.

We also define 𝑟 (𝐷) to be −1 if the game is not winnable and to be

a non-negative integer, 𝑘 , denoting the largest number of dollars we

can remove from the game (in any way), so that it remains winnable.

Finally, we define the canonical configuration 𝐾 to be given by

𝐾 (𝑣) = deg(𝑣) − 2, where deg(𝑣), with 𝑣 ∈ 𝑉 (𝐺), is the number of

edges incident to 𝑣 .

We can now express the Riemann-Roch theorem for graphs:

Theorem 1.2. (Riemann-Roch for graphs) For any configuration 𝐷

on any graph 𝐺 we have

𝑟 (𝐷) − 𝑟 (𝐾 − 𝐷) = deg(𝐷) + 1 − 𝑔

An immediate corollary of this is that if deg(𝐷) = 𝑔 − 1, then

𝑟 (𝐷) = 𝑟 (𝐾 −𝐷), and we see that 𝐷 is winnable if and only if 𝐾 −𝐷
is winnable.

It is easy to see how Theorem 1.1. follows from Theorem 1.2., but

we will see later that these theorems can be expressed in a more

interesting context!
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2 RIEMANN-ROCH FOR GRAPHS
Let 𝐺 be any graph without loop edges, and let 𝑄 denote the Lapla-

cian matrix. We let the divisor group, Div(𝐺), be the free abelian
group on 𝑉 (𝐺), and write an element 𝐷 ∈ Div(𝐺) as the formal

sum

∑
𝑣∈𝑉 (𝐺 ) 𝑎𝑣 (𝑣), and denote 𝑎𝑣 by 𝐷 (𝑣). Think of 𝐷 as a config-

uration on 𝐺 from the debt game. Div(𝐺) is the graph analogy to

the divisors on a Riemann surface, but we won’t go more in depth

with the analogies with Riemann surfaces.

Div(𝐺) has a partial ordering given by 𝐷 ≥ 𝐷′
if and only if

𝐷 (𝑣) ≥ 𝐷′ (𝑣) for all 𝑣 ∈ 𝑉 (𝐺). We call a divisor, 𝐸, effective if 𝐸 ≥ 0

and denote by Div+ (𝐺) the set of effective divisors.
Furthermore, we define the degree function deg : Div(𝐺) → Z

by deg(𝐷) = ∑
𝑣∈𝑉 (𝐺 ) 𝐷 (𝑣), i.e. the sum of coefficients of 𝐷 .

Let M(𝐺) = Hom(𝑉 (𝐺),Z), the abelian group of integer-valued

functions. The Laplacian operator Δ : M(𝐺) → Div(𝐺) is given by

Δ(𝑓 ) =
∑︁

𝑣∈𝑉 (𝐺 )
Δ𝑣 (𝑓 ) (𝑣)

Δ𝑣 (𝑓 ) =
∑︁
𝑒∈𝐸𝑣

(𝑓 (𝑣) − 𝑓 (𝑤))

In fact, one can easily see then that [Δ(𝑓 )] = 𝑄 [𝑓 ].
We define Div

𝑘 (𝐺) = {𝐷 ∈ Div(𝐺) | deg(𝐷) = 𝑘} as well as

Div
𝑘
+ (𝐺) := Div+ (𝐺) ∩ Div

𝑘 (𝐺).
We can now define the principal divisors Prin(𝐺) := Δ(M(𝐺))

and note that this must specially be a subgroup of Div
0 (𝐺). And so,

we can now finally define the quite interesting quotient groups, the

Picard groups of G:

Pic
𝑛 (𝐺) = Div

𝑛 (𝐺)/Prin(𝐺).

and write [𝐷] for the class of in Pic
𝑛 (𝐺) of 𝐷 ∈ Div

𝑔 (𝐺).
The Picard groups, have many interesting properties. For starters,

the order Pic
0 (𝐺) is the number of spanning trees in G.

We now fix a base vertex 𝑣0 and define the Abel-Jacobi map

𝑆𝑣0 : 𝐺 → Pic
0 (𝐺), 𝑆𝑣0 (𝑣) = [(𝑣) − (𝑣0)]

and for 𝑘 ≥ 0 a map 𝑆
(𝑘 )
𝑣0 : Div

𝑘
+ (𝐺) → Pic

0 (𝐺) given by

𝑆
(𝑘 )
𝑣0 ((𝑣1) + · · · + (𝑣𝑘 )) = 𝑆𝑣0 (𝑣1) + 𝑆𝑣0 (𝑣2) + · · · + 𝑆𝑣0 (𝑣𝑘 ) .

then we have

Theorem 2.1. The map, 𝑆 (𝑘 ) , is surjective if and only if 𝑘 ≥ 𝑔.

We define a linear equivalence relation 𝐷 ∼ 𝐷′
if 𝐷 − 𝐷′ ∈

Prin(𝐺). (In terms of dollar-debt game 𝐷 ∼ 𝐷′
if and only if there

is a series of moves that connect the two). Note that it follows that

𝐷 and 𝐷′
have same degree and that Pic

𝑛
is the set of equivalence

classes of degree 𝑛 divisors on 𝐺 .

One can also show that 𝑆 (𝑘 ) is surjective if and only if every

divisor of degree 𝑘 is linearly equivalent to an effective divisor.

From this we see that Theorem 2.1 is equivalent to Theorem 1.1!
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Let

|𝐷 | := {𝐸 ∈ Div(𝐺) | 𝐸 ≥ 0, 𝐸 ∼ 𝐷}
which we use to define the dimension as 𝑟 (𝐷) = −1 if |𝐷 | = ∅ and

𝑟 (𝐷) = max{ 𝑠 | |𝐷 − 𝐸 | ≠ ∅ for all 𝐸 of degree 𝑠}. Note 𝑟 (𝐷) is
invariant under the equivalence, ∼. (In terms of dollar-debt game

𝑟 (𝐷) is the maximum number of dollars you can remove (in any

way) from the board such that it remains winnable).

Finally, the canonical divisor is given by

𝐾 =
∑︁

𝑣∈𝑉 (𝐺 )
(deg(𝑣) − 2) (𝑣).

Note deg(𝐾) = 2|𝐸 (𝐺) | − 2|𝑉 (𝐺) | = 2𝑔 − 2, since we get every

edge twice.

Thuswe can restate Theorem 1.2. in thismore rigorous framework

Theorem 2.2. (Riemann-Roch for graphs) Let𝐺 a graph,𝐷 a divisor

on 𝐺 . Then

𝑟 (𝐷) − 𝑟 (𝐾 − 𝐷) = deg(𝐷) + 1 − 𝑔

The properties of Riemann-Roch for Graphs has a lot of overlap

with those of Riemann-Roch for Riemann surfaces, however it’s not

one to one and one must be careful.

An easy consequence of this is Clifford’s Theorem for Graphs:

Corollary 2.3. Let 𝐷 be an effective divisor such that |𝐾 − 𝐷 | ≠ ∅
(called special) on 𝐺 . Then

𝑟 (𝐷) ≤ 1

2

deg(𝐷)

3 THE PROOF
There was nothing special about the set, 𝑉 (𝐺), on which defined

Div(𝐺), so we could’ve used any set 𝑋 instead of 𝑉 (𝐺). Likewise
the effective divisors and Div

𝑑
+ did not depend on anything other

then the set structure, and can be generalized to any set, 𝑋 . Further,

if we can define ∼ on Div(𝑋 ) satisfying:
(E1) If 𝐷 ∼ 𝐷′

then deg(𝐷) = deg(𝐺 ′).
(E2) If 𝐷1 ∼ 𝐷′

1
and 𝐷2 ∼ 𝐷′

2
, then 𝐷1 + 𝐷2 ∼ 𝐷′

1
+ 𝐷′

2
.

Then we can define |𝐷 | := {𝐸 ∈ Div(𝑋 ) | 𝐸 ≥ 0, 𝐸 ∼ 𝐷}, and
𝑟 : Div(𝑋 ) → {−1, 0, 1, 2, ...} in the same way we did for graphs.

Finally let N = {𝐷 ∈ Div(𝑋 ) | deg(𝐷) = 𝑔 − 1, |𝐷 | = ∅}, and 𝐾
some divisor with degree 2𝑔 − 2.

Then we have the following generalization of Riemann-Roch,

which we will take for granted:

Theorem 3.1. The Riemann-Roch equality,

𝑟 (𝐷) − 𝑟 (𝐾 − 𝐷) = deg(𝐷) + 1 − 𝑔,

holds for all 𝐷 ∈ Div(𝐺) iff the following two properties hold:

(RR1) For every 𝐷 ∈ Div(𝑋 ), there is 𝜈 ∈ N such that either

|𝐷 | = ∅ or |𝜈 − 𝐷 | = ∅, but never both.
(RR2) For every 𝐷 ∈ Div(𝑋 ) with deg(𝐷) = 𝑔 − 1, either both

|𝐷 | = ∅ and |𝐾 − 𝐷 | = ∅, or both are non-empty.

To prove this one needs 𝑣0-reduced divisors which are divisors

which satisfy 𝐷 (𝑣) ≥ 0 for all 𝑣 ≠ 𝑣0, and that for every non-empty

subset𝐴 ⊆ 𝑉 (𝐺)−{𝑣0} there is 𝑣 ∈ 𝐴 such that𝐷 (𝑣) < outdeg𝐴 (𝑣),
where outdeg𝐴 is the number of edges from 𝑣 which end not in 𝐴.

In terms of dollar-debt game: 𝑣0 is the only vertex which can be

in debt and if all 𝑣 ∈ 𝐴 were to make a lending move, some vertex

of 𝐴 would go into debt, for all 𝐴 ⊂ 𝑉 (𝐺) − {𝑣0}.

Proposition 3.2. Fix 𝑣0 then for every divisor 𝐷 there is a unique

𝑣0-reduced divisor 𝐷′
such that 𝐷 ∼ 𝐷′

.

Given some total order <𝑃 on 𝑉 (𝐺) we define a specefic divisor:

𝜈𝑃 =
∑︁

𝑣∈𝑉 (𝐺 )
( |{𝑒 = 𝑣𝑤 ∈ 𝐸 (𝐺) | 𝑤 <𝑃 𝑣}| − 1) (𝑣)

And notice that deg(𝜈𝑃 ) = |𝐸 (𝐺) | − |𝑉 (𝐺) | = 𝑔 − 1, since we will

see every edge and we subtract 1 at each vertex.

It turns out that 𝜈𝑃 ∈ N for all total orders, <𝑃 . Which will help

us prove the following:

Theorem 3.3. For all divisors 𝐷 exactly one of the following hold:

(N1) 𝑟 (𝐷) ≥ 0

(N2) 𝑟 (𝜈𝑃 − 𝐷) ≥ 0 for some <𝑃 .

Proof. Fix 𝑣0. We may assume 𝐷 is 𝑣0-reduced by prop. 3.2. We

define an order 𝑣1, 𝑣2, ..., 𝑣 |𝑉 (𝐺 ) |−1 (i.e. 𝑣𝑖 <𝑃 𝑣 𝑗 iff 𝑖 < 𝑗 ) iductively:

If 𝑣0, ..., 𝑣𝑘−1 defined then let𝐴𝑘 = 𝑉 (𝐺) − {𝑣0, ..., 𝑣𝑘−1} and choose
𝑣𝑘 so that 𝐷 (𝑣𝑘 ) < outdeg𝐴𝑘

(𝑣𝑘 ).
Now for every 𝑣𝑘 ≠ 𝑣0 we have by definition of 𝜈𝑃

𝐷 (𝑣𝑘 ) ≤ outdeg𝐴𝑘
− 1

= |{𝑒 = 𝑣𝑘𝑣 𝑗 | 𝑣 𝑗 < 𝑣𝑘 }| − 1

= 𝜈𝑃 (𝑣𝑘 ).
If 𝐷 (𝑣0) ≥ 0 then 𝐷 ≥ 0 (since it’s 𝑣0-reduced) and (N1) holds.

And if 𝐷 (𝑣0) ≤ −1 then 𝐷 ≤ 𝜈𝑃 , so 𝜈𝑃 − 𝐷 ≥ 0 and (N2) holds. If

both 𝑟 (𝐷) ≥ 0 and 𝑟 (𝜈𝑃 − 𝐷) ≥ 0 then 𝑟 (𝜈𝑃 ) = 𝑟 (𝐷 + 𝜈𝑝 − 𝐷) ≥
𝑟 (𝐷) + 𝑟 (𝜈𝑝 − 𝐷) ≥ 0, contradicting that 𝜈𝑃 ∈ N . □

Corollary 3.4. For all divisors, 𝐷 , of degree 𝑔 − 1, we have that

𝐷 ∈ N if and only if there exists <𝑃 on 𝑉 (𝐺) such that 𝐷 ∼ 𝜈𝑃 .

Proof. If 𝜈𝑃 −𝐷 ∼ 𝐸 with 𝐸 ≥ 0 then deg(𝐸) = deg(𝜈𝑃 −𝐷) = 0

and so 𝐸 = 0 and 𝐷 ∼ 𝜈𝑃 . □

Finally we can prove Theorem 2.2:

Proof. (of Theorem 2.2) We need to show RR1 and RR2 hold.

Assume 𝐷 ∈ Div(𝐺) with 𝑟 (𝐷) ≥ 0. For all 𝜈 ∈ N we have

𝑟 (𝜈 − 𝐷) = −1 and so |𝐷 | ≠ ∅ and |𝜈 − 𝐷 | = ∅. So RR1 holds.

On the other hand if 𝑟 (𝐷) = −1, then by [3.3], have 𝑟 (𝜈𝑃 −𝐷) ≥ 0

for some <𝑃 , and then |𝐷 | = ∅ and |𝜈𝑃 − 𝐷 | ≠ ∅. Since 𝜈𝑃 ∈ N , so

RR1 holds.

For RR2 it suffice to show that for all 𝐷 ∈ N we have 𝐾 −𝐷 ∈ N .

By [3.4] we have 𝐷 ∼ 𝜈𝑃 for some order <𝑃 . Define <𝑄 by 𝑣 <𝑄
𝑤 ⇔ 𝑤 <𝑃 𝑣 , i.e. the reverse of 𝑃 . Then for every 𝑣 we have

𝜈𝑃 (𝑣) + 𝜈𝑄 (𝑣) = |{𝑒 = 𝑣𝑤 | 𝑤 <𝑃 𝑣}| − 1

+ |{𝑒 = 𝑣𝑤 | 𝑤 <𝑄 𝑣}| − 1

= deg(𝑣) − 2 = 𝐾 (𝑣).
So 𝜈𝑄 = 𝐾 − 𝜈𝑃 and so 𝐾 − 𝐷 ∼ 𝐾 − 𝜈𝑃 = 𝜈𝑄 ∈ N □
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4 APPLICATIONS
This theory and the Riemann-Roch for graphs have many applica-

tions in various fields. One example is that we can give a profound

proof of the classic Kirchhoff’s Theorem:

Theorem 4.1 (Kirchoff’s Theorem). The number of spanning trees

of a graph 𝐺 is equal to any cofactor of the Laplacian of 𝐺 .

First we must define break divisors: A break divisor, 𝐷 , on a graph,

𝐺 , is an effective divisor of degree 𝑔(𝐺) such that𝐷 restricted to any

connected subgraph𝐻 of𝐺 has the property that deg(𝐷 |𝐻 ) ≥ 𝑔(𝐻 ).
It turns out break divisors have a special connection with spanning

trees and the picard groups:

Theorem 4.2 Let 𝑔 be the genus of𝐺 . Then every degree 𝑔 divisor is

equivalent to a unique break divisor. Thus the set of break divisors

on 𝐺 is canonically in bijection with Pic
𝑔 (𝐺)

Since |Pic𝑔 (𝐺) | = |Pic0 (𝐺) | and the size of Pic
0 (𝐺) is exactly the

number of spanning trees, we see that the number of break divisors

on 𝐺 equals the number of spanning trees of 𝐺!

Finally, before stating the theorem, we need to talk about tropical

curves:

A tropical curve (or metric graph), Γ can be obtained from a graph

𝐺 by assigning an edge-length ℓ (𝑒) ∈ R to each edge 𝑒 ∈ 𝐸 (𝐺), and
identifying 𝑒 with the obvious line segment of that length.

Divisors on tropical curves are of the form

∑
𝑝∈Γ 𝑎𝑝 (𝑝), with only

finitely many 𝑎𝑝 ∈ Z non-zero and 𝑝 allowed to be anywhere along

any edge.

Let 𝑓 : Γ → R be any tropical rational function: a piecewise linear

function with only finitely many pieces, each having integer slope. A

principal divisor, div(𝑓 ) is then given as div(𝑓 ) = ∑
𝑝∈Γ ord𝑝 (𝑓 ) (𝑝),

with ord𝑝 (𝑓 ) being minus the sum of the outgoing slopes of 𝑓

emanating from 𝑝 .

We define Pic
𝑛 (Γ) in exactly the same way as for graphs:

Pic
𝑛 (Γ) = Div

𝑛 (Γ)/Prin(Γ)

Now Pic
0
is no longer finite group but rather a real 𝑔-dimensional

torus.

Similarly to graphs, we can also define break divisors on a tropical

curve, Γ. A break divisor on Γ is an effective divisor, 𝐷 , of degree

𝑔 such that 𝐷 restricted to any closed connected subgraph Γ′ has
degree at least that of the genus of Γ′. Once again it can be shown

that there is a bijection between the break divisors of Γ and Pic
𝑔 (Γ).

Furthermore, one has that 𝐷 is a break divisor on Γ if and only if

there exists a spanning tree 𝑇 of 𝐺 and an enumeration 𝑒◦
1
, ..., 𝑒◦𝑔 of

Γ\𝑇 such that 𝐷 = (𝑝1) + · · · + (𝑝𝑔) with each 𝑝𝑖 ∈ 𝑒𝑖 (where 𝑒◦𝑖 are

the open edge of 𝑒𝑖 (i.e. endpoints removed)). For a tree 𝑇 , let 𝐵𝑇 be

the set of all divisors, (𝑝1) + · · · + (𝑝𝑔), defined as above. Finally let

𝐶𝑇 ⊂ Pic
𝑔 (𝑇 ) be the image of 𝐵𝑇 under the map 𝐷 ↦→ [𝐷], sending

𝐷 to it’s linear equivalence class. Then we have the following:

Theorem 4.3 We have that Pic
𝑔 (Γ) = ⋃

𝑇 ∈T 𝐶𝑇 , where T is the

set of all spanning trees of 𝐺 . Furthermore, each 𝐶𝑇 ⊂ Pic
𝑔 (Γ) is a

parallelotope with their relative interior disjoint.

What’s more there is a natural metric on Pic
𝑔 (Γ) for which

vol(𝐶𝑇 ) =
∏

𝑒∉𝑇 ℓ (𝑒) and the volume of Pic
𝐺 (Γ) is naturally re-

lated to the determinant of the Laplacian of 𝐺 , from which one can

recover Kirchoff’s theorem!

5 QUICK EXAMPLE
Let Γ be the metric graph consisting of 2 vertices connected by 3

edges of length, 2, 1 and 2. We can fix a model,𝐺 , for Γ in which all

edges have length 1:

Fig. 1. Model for Γ

This has the following spanning trees:

Fig. 2. Spanning trees of𝐺

And the cell decomposition looks as follows:

Fig. 3. Cell decomposition
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