Riemann-Roch on graphs,
debt games and applications.

MAGNUS RAHBEK HANSEN

This is a brief survey of two papers.}2 We cover the nature of di-
visors on graphs and show part of the proof of a graph-theoretic
counterpart of the classic Riemann-Roch theorem. Furthermore, the
theory is applied to give a new volumetric version of Kirchoft’s
theorem.

1 DOLLAR DEBT GAME

Consider any connected graph, G, with an integer weight at each
vertex, v € V(G). Think of the weight as the amount of dollars (or
debt) the vertex has. For any vertex, v, we allow two legal moves:
Either v takes a dollar from each neighbor, w (i.e. v, w connected by
an edge e = vw € E(G)), trough each edge. Or v gives a dollar to
each neighbor, through each edge. The goal of the game is then to
get every vertex out of debt. The natural question is of course; for
which configurations is the game winnable?
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Figure 1: Example of legal move.

(1)

First we need some notation. We denote the genus of any graph,
G, by g == |E(G)| — |[V(G)| + 1 and define the degree, deg(D), of
a vertex-weighted graph, D, as the sum of all the weights (i.e. the
total number of dollars). Then we have the following:

Theorem 1.1. If deg(D) > g, then the game is always winnable.
Furthermore, if deg(D) < g—1, then there exists some configuration
for which the game is not winnable.

We also define r(D) to be —1 if the game is not winnable and to be
anon-negative integer, k, denoting the largest number of dollars we
can remove from the game (in any way), so that it remains winnable.

Finally, we define the canonical configuration K to be given by
K(v) = deg(v) — 2, where deg(v), with v € V(G), is the number of
edges incident to v.

We can now express the Riemann-Roch theorem for graphs:

Theorem 1.2. (Riemann-Roch for graphs) For any configuration D
on any graph G we have

r(D)—r(K—-D)=deg(D)+1—-g¢g

An immediate corollary of this is that if deg(D) = g — 1, then
r(D) = r(K — D), and we see that D is winnable if and only if K — D
is winnable.

It is easy to see how Theorem 1.1. follows from Theorem 1.2., but
we will see later that these theorems can be expressed in a more
interesting context!
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2 RIEMANN-ROCH FOR GRAPHS

Let G be any graph without loop edges, and let Q denote the Lapla-
cian matrix. We let the divisor group, Div(G), be the free abelian
group on V(G), and write an element D € Div(G) as the formal
sum Y ,ev(G) @ (), and denote ay by D(v). Think of D as a config-
uration on G from the debt game. Div(G) is the graph analogy to
the divisors on a Riemann surface, but we won’t go more in depth
with the analogies with Riemann surfaces.

Div(G) has a partial ordering given by D > D’ if and only if
D(v) > D’ (v) forallv € V(G). We call a divisor, E, effective if E > 0
and denote by Div, (G) the set of effective divisors.

Furthermore, we define the degree function deg : Div(G) — Z
by deg(D) = Y yev () D(v), i.e. the sum of coefficients of D.

Let M(G) = Hom(V(G), Z), the abelian group of integer-valued
functions. The Laplacian operator A : M(G) — Div(G) is given by

AP = D Bo(f)0)

veV(G)

Bo(f) = ), (f0) = f(w))
ecE,
In fact, one can easily see then that [A(f)] = Q[f].

We define Divk(G) = {D € Div(G) | deg(D) = k} as well as
Divk (G) := Div4(G) N Divk(G).

We can now define the principal divisors Prin(G) := A(M(G))
and note that this must specially be a subgroup of Div®(G). And so,
we can now finally define the quite interesting quotient groups, the
Picard groups of G:

Pic"(G) = Div"*(G) /Prin(G).

and write [D] for the class of in Pic(G) of D € DivI(G).

The Picard groups, have many interesting properties. For starters,
the order Pic’(G) is the number of spanning trees in G.

We now fix a base vertex vy and define the Abel-Jacobi map

Su : G = Pic’(G),  Su(0) = [(0) = ()]
and for k > 0 a map SZ(,({C) : Divlj(G) — Pic%(G) given by

k
Sty (@) -+ (94)) = Son (01) + Sy (02) + -+ Sy (08).
then we have
Theorem 2.1. The map, 5% is surjective if and only if k > g.

We define a linear equivalence relation D ~ D’ if D — D’ €
Prin(G). (In terms of dollar-debt game D ~ D’ if and only if there
is a series of moves that connect the two). Note that it follows that
D and D’ have same degree and that Pic” is the set of equivalence
classes of degree n divisors on G.

One can also show that S is surjective if and only if every
divisor of degree k is linearly equivalent to an effective divisor.
From this we see that Theorem 2.1 is equivalent to Theorem 1.1!
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Let
|D| .= {E € Div(G) | E > 0,E ~ D}

which we use to define the dimension as r(D) = —1if |D| = () and
r(D) = max{ s | |D — E| # 0 for all E of degree s}. Note r(D) is
invariant under the equivalence, ~. (In terms of dollar-debt game
r(D) is the maximum number of dollars you can remove (in any
way) from the board such that it remains winnable).

Finally, the canonical divisor is given by

K= ), (deg(v) = 2)(0).
0eV(G)
Note deg(K) = 2|E(G)| — 2|V (G)| = 2g — 2, since we get every
edge twice.
Thus we can restate Theorem 1.2. in this more rigorous framework

Theorem 2.2. (Riemann-Roch for graphs) Let G a graph, D a divisor
on G. Then

r(D)—r(K—-D)=deg(D)+1—g

The properties of Riemann-Roch for Graphs has a lot of overlap
with those of Riemann-Roch for Riemann surfaces, however it’s not
one to one and one must be careful.

An easy consequence of this is Clifford’s Theorem for Graphs:

Corollary 2.3. Let D be an effective divisor such that |K — D| # 0
(called special) on G. Then

r(D) < %deg(D)

3 THE PROOF

There was nothing special about the set, V(G), on which defined
Div(G), so we could’ve used any set X instead of V(G). Likewise
the effective divisors and Divf did not depend on anything other
then the set structure, and can be generalized to any set, X. Further,
if we can define ~ on Div(X) satisfying:
(E1) If D ~ D’ then deg(D) = deg(G’).
(E2) If Dy ~ D] and Dz ~ D, then Dy + Dz ~ D} + D,

Then we can define |D| := {E € Div(X) | E > 0,E ~ D}, and
r:Div(X) — {-1,0,1,2, ...} in the same way we did for graphs.

Finally let N = {D € Div(X) | deg(D) = g — 1,|D| = 0}, and K
some divisor with degree 2g — 2.

Then we have the following generalization of Riemann-Roch,
which we will take for granted:

Theorem 3.1. The Riemann-Roch equality,
r(D) —r(K—-D) =deg(D)+1—g,
holds for all D € Div(G) iff the following two properties hold:

(RR1) For every D € Div(X), there is v € N such that either
|D| = 0 or |v — D| = 0, but never both.

(RR2) For every D € Div(X) with deg(D) = g — 1, either both
|D| = 0 and |[K — D| = 0, or both are non-empty.

To prove this one needs vg-reduced divisors which are divisors
which satisfy D(v) > 0 for all v # vg, and that for every non-empty
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subset A C V(G) —{vo} there isv € A such that D(v) < outdeg 4 (v),
where outdeg4 is the number of edges from v which end not in A.

In terms of dollar-debt game: vy is the only vertex which can be
in debt and if all v € A were to make a lending move, some vertex
of A would go into debt, for all A ¢ V(G) — {vo}.

Proposition 3.2. Fix vy then for every divisor D there is a unique
vo-reduced divisor D’ such that D ~ D’.

Given some total order <p on V(G) we define a specefic divisor:

vp= Y (He=oweE(G)|w<po}l-1)(v)
veV(G)
And notice that deg(vp) = |E(G)| — |V(G)| = g — 1, since we will
see every edge and we subtract 1 at each vertex.
It turns out that vp € N for all total orders, <p. Which will help
us prove the following:

Theorem 3.3. For all divisors D exactly one of the following hold:
(N1) r(D)=0
(N2) r(vp - D) 2 0 for some <p.

Proor. Fix vg. We may assume D is vg-reduced by prop. 3.2. We
define an order vy, v, ..., vy (G)|-1 (i.e. vi <p vj iff i < j) iductively:
If vy, ..., vj_; defined then let Ay = V(G) — {0y, ..., vx_1 } and choose
vy so that D(vg) < outdegy, (vg)-

Now for every v # vg we have by definition of vp

D(vg) < outdegy, -1
= {e=vkvj | vj <o}l -1
= vp(vg).
If D(vg) > 0 then D > 0 (since it’s vg-reduced) and (N1) holds.
And if D(vg) < —1 then D < vp, so vp — D > 0 and (N2) holds. If
both r(D) > 0 and r(vp — D) 2 0 then r(vp) = r(D +vp — D) 2
r(D) +r(vp — D) 2 0, contradicting that vp € N. O

Corollary 3.4. For all divisors, D, of degree g — 1, we have that
D € N if and only if there exists <p on V(G) such that D ~ vp.

Proor. If vp — D ~ E with E > 0 then deg(E) = deg(vp —D) =0
andso E=0and D ~ vp. o

Finally we can prove Theorem 2.2:

ProoF. (of Theorem 2.2) We need to show RR1 and RR2 hold.

Assume D € Div(G) with r(D) > 0. For all v € N we have
r(v—D)=-1andso |D| # 0 and |v — D| = 0. So RR1 holds.

On the other hand if r(D) = —1, then by [3.3], have r(vp—D) > 0
for some <p, and then |D| = 0 and |vp — D| # 0. Since vp € N, so
RR1 holds.

For RR2 it suffice to show that for all D € N we have K—D € N.
By [3.4] we have D ~ vp for some order <p. Define <g by v <g
w & w <p v, i.e. the reverse of P. Then for every v we have

vp() +vo(v) = [{e=ow | w <p 0} = 1
+{e=0ow|w<go}| -1
=deg(v) — 2 = K(v).
Sovg=K-vpandsoK-D~K-vp=vgeN o



4 APPLICATIONS

This theory and the Riemann-Roch for graphs have many applica-
tions in various fields. One example is that we can give a profound
proof of the classic Kirchhoff’s Theorem:

Theorem 4.1 (Kirchoff’s Theorem). The number of spanning trees
of a graph G is equal to any cofactor of the Laplacian of G.

First we must define break divisors: A break divisor, D, on a graph,
G, is an effective divisor of degree g(G) such that D restricted to any
connected subgraph H of G has the property that deg(D|g) > g(H).
It turns out break divisors have a special connection with spanning
trees and the picard groups:

Theorem 4.2 Let g be the genus of G. Then every degree g divisor is
equivalent to a unique break divisor. Thus the set of break divisors
on G is canonically in bijection with Picd (G)

Since |Pic? (G)| = |Pic’(G)| and the size of Pic®(G) is exactly the
number of spanning trees, we see that the number of break divisors
on G equals the number of spanning trees of G!

Finally, before stating the theorem, we need to talk about tropical
curves:

A tropical curve (or metric graph), I can be obtained from a graph
G by assigning an edge-length £(e) € R to each edge e € E(G), and
identifying e with the obvious line segment of that length.

Divisors on tropical curves are of the form ¥, ,cr ap (p), with only
finitely many a, € Z non-zero and p allowed to be anywhere along
any edge.

Let f : T — Rbe any tropical rational function: a piecewise linear
function with only finitely many pieces, each having integer slope. A
principal divisor, div(f) is then given as div(f) = X yer ordp (f) (p),
with ord, (f) being minus the sum of the outgoing slopes of f
emanating from p.

We define Pic™(T) in exactly the same way as for graphs:

Pic™(T) = Div"*(T)/Prin(T)

Now Pic? is no longer finite group but rather a real g-dimensional
torus.

Similarly to graphs, we can also define break divisors on a tropical
curve, I'. A break divisor on T is an effective divisor, D, of degree
g such that D restricted to any closed connected subgraph I'” has
degree at least that of the genus of . Once again it can be shown
that there is a bijection between the break divisors of T and Pic(T).

Furthermore, one has that D is a break divisor on T if and only if
there exists a spanning tree T of G and an enumeration e, ..., e; of
T\T such that D = (p1) +- - - + (pg) With each p; € e; (Where e; are
the open edge of e; (i.e. endpoints removed)). For a tree T, let By be
the set of all divisors, (p1) +- - - + (py), defined as above. Finally let
Cr c Picd(T) be the image of B under the map D — [D], sending
D to it’s linear equivalence class. Then we have the following:

Theorem 4.3 We have that Pic/(I') = Urecq Cr, where 7 is the
set of all spanning trees of G. Furthermore, each Ct C Picd(T) is a
parallelotope with their relative interior disjoint.
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What’s more there is a natural metric on Picd(T) for which
vol(Cr) = [legr £(e) and the volume of Pic®(I) is naturally re-
lated to the determinant of the Laplacian of G, from which one can
recover Kirchoff’s theorem!

5 QUICK EXAMPLE

Let T be the metric graph consisting of 2 vertices connected by 3
edges of length, 2, 1 and 2. We can fix a model, G, for I' in which all
edges have length 1:

Fig. 1. Model for T’

This has the following spanning trees:

V ¢ Y

Fig. 2. Spanning trees of G

And the cell decomposition looks as follows:

S - S
&

Fig. 3. Cell decomposition
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