Riemann-Roch on graphs, debt games and applications.

MAGNUS RAHBEK HANSEN

This is a brief survey of two papers.^{[1](#page-0-0)[2](#page-0-1)} We cover the nature of divisors on graphs and show part of the proof of a graph-theoretic counterpart of the classic Riemann-Roch theorem. Furthermore, the theory is applied to give a new volumetric version of Kirchoff's theorem.

1 DOLLAR DEBT GAME

Consider any connected graph, G, with an integer weight at each vertex, $v \in V(G)$. Think of the weight as the amount of dollars (or debt) the vertex has. For any vertex, v , we allow two legal moves: Either v takes a dollar from each neighbor, w (i.e. v , w connected by an edge $e = vw \in E(G)$, trough each edge. Or v gives a dollar to each neighbor, through each edge. The goal of the game is then to get every vertex out of debt. The natural question is of course; for which configurations is the game winnable?

Figure 1: Example of legal move.

First we need some notation. We denote the genus of any graph, G, by $g := |E(G)| - |V(G)| + 1$ and define the degree, deg(D), of a vertex-weighted graph, D , as the sum of all the weights (i.e. the total number of dollars). Then we have the following:

Theorem 1.1. If $deg(D) \geq g$, then the game is always winnable. Furthermore, if deg(D) \leq $g-1$, then there exists some configuration for which the game is not winnable.

We also define $r(D)$ to be −1 if the game is not winnable and to be a non-negative integer, k , denoting the largest number of dollars we can remove from the game (in any way), so that it remains winnable.

Finally, we define the canonical configuration K to be given by $K(v) = deg(v) - 2$, where $deg(v)$, with $v \in V(G)$, is the number of edges incident to v .

We can now express the Riemann-Roch theorem for graphs:

Theorem 1.2. (Riemann-Roch for graphs) For any configuration D on any graph G we have

$$
r(D) - r(K - D) = \deg(D) + 1 - g
$$

An immediate corollary of this is that if deg(D) = $g - 1$, then $r(D) = r(K - D)$, and we see that D is winnable if and only if $K - D$ is winnable.

It is easy to see how Theorem 1.1. follows from Theorem 1.2., but we will see later that these theorems can be expressed in a more interesting context!

2 RIEMANN-ROCH FOR GRAPHS

Let G be any graph without loop edges, and let O denote the Laplacian matrix. We let the divisor group, $Div(G)$, be the free abelian group on $V(G)$, and write an element $D \in Div(G)$ as the formal sum $\sum_{v \in V(G)} a_v(v)$, and denote a_v by $D(v)$. Think of D as a configuration on G from the debt game. Div(G) is the graph analogy to the divisors on a Riemann surface, but we won't go more in depth with the analogies with Riemann surfaces.

 $Div(G)$ has a partial ordering given by $D \ge D'$ if and only if $D(v) \ge D'(v)$ for all $v \in V(G)$. We call a divisor, E, effective if $E \ge 0$ and denote by $Div_{+}(G)$ the set of effective divisors.

Furthermore, we define the degree function deg : $Div(G) \rightarrow \mathbb{Z}$ by deg(D) = $\sum_{v \in V(G)} D(v)$, i.e. the sum of coefficients of D.

Let $M(G) = \text{Hom}(V(G), \mathbb{Z})$, the abelian group of integer-valued functions. The Laplacian operator $\Delta : \mathcal{M}(G) \to Div(G)$ is given by

$$
\Delta(f) = \sum_{v \in V(G)} \Delta_v(f)(v)
$$

$$
\Delta_v(f) = \sum_{e \in E_v} (f(v) - f(w))
$$

In fact, one can easily see then that $[\Delta(f)] = Q[f]$.

We define $Div^k(G) = \{ D \in Div(G) \mid deg(D) = k \}$ as well as $Div_{+}^{k}(G) := Div_{+}(G) \cap Div_{+}^{k}(G).$

We can now define the principal divisors $Prin(G) := \Delta(\mathcal{M}(G))$ and note that this must specially be a subgroup of $Div^0(G)$. And so, we can now finally define the quite interesting quotient groups, the Picard groups of G:

$$
Picn(G) = Divn(G)/Prin(G).
$$

and write [D] for the class of in Picⁿ(G) of $D \in Div^g(G)$.

The Picard groups, have many interesting properties. For starters, the order $Pic^0(G)$ is the number of spanning trees in G.

We now fix a base vertex v_0 and define the Abel-Jacobi map

$$
S_{v_0}: G \to \text{Pic}^0(G), \quad S_{v_0}(v) = [(v) - (v_0)]
$$

and for $k \geq 0$ a map $S_{v_0}^{(k)}: \mathrm{Div}_+^k(G) \to \mathrm{Pic}^0(G)$ given by

$$
S_{v_0}^{(k)}((v_1) + \cdots + (v_k)) = S_{v_0}(v_1) + S_{v_0}(v_2) + \cdots + S_{v_0}(v_k).
$$

then we have

Theorem 2.1. The map, $S^{(k)}$, is surjective if and only if $k \ge g$.

We define a linear equivalence relation $D \sim D'$ if $D - D' \in$ Prin(*G*). (In terms of dollar-debt game $D \sim D'$ if and only if there is a series of moves that connect the two). Note that it follows that D and D' have same degree and that Pic^{n} is the set of equivalence classes of degree n divisors on G .

One can also show that $S^{(k)}$ is surjective if and only if every divisor of degree k is linearly equivalent to an effective divisor. From this we see that Theorem 2.1 is equivalent to Theorem 1.1!

¹ [arXiv:math/0608360v3 \[math.CO\] 9 Jul 2007](https://arxiv.org/abs/math/0608360)

² [arXiv:1304.4259v2 \[math.CO\] 24 Sep 2014](https://arxiv.org/abs/1304.4259)

2 • wlt591

Let

$$
|D| := \{ E \in \text{Div}(G) \mid E \ge 0, E \sim D \}
$$

which we use to define the dimension as $r(D) = -1$ if $|D| = \emptyset$ and $r(D) = \max\{ s | |D - E| \neq \emptyset \text{ for all } E \text{ of degree } s \}.$ Note $r(D)$ is invariant under the equivalence, ∼. (In terms of dollar-debt game $r(D)$ is the maximum number of dollars you can remove (in any way) from the board such that it remains winnable).

Finally, the canonical divisor is given by

$$
K = \sum_{v \in V(G)} (\deg(v) - 2)(v).
$$

Note deg(K) = $2|E(G)| - 2|V(G)| = 2g - 2$, since we get every edge twice.

Thus we can restate Theorem 1.2. in this more rigorous framework

Theorem 2.2. (Riemann-Roch for graphs) Let G a graph, D a divisor on G. Then

$$
r(D) - r(K - D) = \deg(D) + 1 - q
$$

The properties of Riemann-Roch for Graphs has a lot of overlap with those of Riemann-Roch for Riemann surfaces, however it's not one to one and one must be careful.

An easy consequence of this is Clifford's Theorem for Graphs:

Corollary 2.3. Let *D* be an effective divisor such that $|K - D| \neq \emptyset$ (called special) on G . Then

$$
r(D) \leq \frac{1}{2} \text{deg}(D)
$$

3 THE PROOF

There was nothing special about the set, $V(G)$, on which defined $Div(G)$, so we could've used any set X instead of $V(G)$. Likewise the effective divisors and Div^d_+ did not depend on anything other then the set structure, and can be generalized to any set, X . Further, if we can define $∼$ on Div(X) satisfying:

(E1) If $D \sim D'$ then deg(D) = deg(G').

(E2) If $D_1 \sim D'_1$ and $D_2 \sim D'_2$, then $D_1 + D_2 \sim D'_1 + D'_2$.

Then we can define $|D| := \{ E \in Div(X) \mid E \geq 0, E \sim D \}$, and $r: Div(X) \rightarrow \{-1, 0, 1, 2, ...\}$ in the same way we did for graphs.

Finally let $N = \{D \in Div(X) \mid \text{deg}(D) = g - 1, |D| = \emptyset\}$, and K some divisor with degree $2g - 2$.

Then we have the following generalization of Riemann-Roch, which we will take for granted:

Theorem 3.1. The Riemann-Roch equality,

$$
r(D) - r(K - D) = \deg(D) + 1 - q,
$$

holds for all $D \in Div(G)$ iff the following two properties hold:

(RR1) For every $D \in Div(X)$, there is $v \in \mathcal{N}$ such that either $|D| = \emptyset$ or $|v - D| = \emptyset$, but never both.

(RR2) For every $D \in Div(X)$ with $deg(D) = g - 1$, either both $|D| = \emptyset$ and $|K - D| = \emptyset$, or both are non-empty.

To prove this one needs v_0 -reduced divisors which are divisors which satisfy $D(v) \ge 0$ for all $v \ne v_0$, and that for every non-empty

Riemann-Roch on graphs, debt games and applications

subset $A \subseteq V(G) - \{v_0\}$ there is $v \in A$ such that $D(v) < \text{outdeg}_A(v)$, where outdeg $_A$ is the number of edges from v which end not in A .

In terms of dollar-debt game: v_0 is the only vertex which can be in debt and if all $v \in A$ were to make a lending move, some vertex of *A* would go into debt, for all $A \subset V(G) - \{v_0\}.$

Proposition 3.2. Fix v_0 then for every divisor D there is a unique v_0 -reduced divisor D' such that $D \sim D'$.

Given some total order \lt_{P} on $V(G)$ we define a specefic divisor:

$$
\nu_P = \sum_{v \in V(G)} (|\{e = vw \in E(G) \mid w <_P v\}| - 1)(v)
$$

And notice that $deg(v_P) = |E(G)| - |V(G)| = q - 1$, since we will see every edge and we subtract 1 at each vertex.

It turns out that $v_P \in \mathcal{N}$ for all total orders, $\langle P \rangle$. Which will help us prove the following:

Theorem 3.3. For all divisors D exactly one of the following hold: $(N1)$ $r(D) \ge 0$

(N2) $r(v_P - D) \ge 0$ for some $\le P$.

PROOF. Fix v_0 . We may assume D is v_0 -reduced by prop. 3.2. We define an order $v_1, v_2, ..., v_{|V(G)|-1}$ (i.e. $v_i <_P v_j$ iff $i < j$) iductively: If $v_0, ..., v_{k-1}$ defined then let $A_k = V(G) - \{v_0, ..., v_{k-1}\}$ and choose v_k so that $D(v_k) < \text{outdeg}_{A_k}(v_k)$.

Now for every $v_k \neq v_0$ we have by definition of v_p

$$
D(v_k) \leq \text{outdeg}_{A_k} - 1
$$

= $|\{e = v_k v_j \mid v_j < v_k\}| - 1$
= $v_P(v_k)$.

If $D(v_0) \ge 0$ then $D \ge 0$ (since it's v_0 -reduced) and (N1) holds. And if $D(v_0) \leq -1$ then $D \leq v_p$, so $v_p - D \geq 0$ and (N2) holds. If both $r(D) \ge 0$ and $r(\nu_p - D) \ge 0$ then $r(\nu_p) = r(D + \nu_p - D) \ge$ $r(D) + r(v_p - D) \ge 0$, contradicting that $v_p \in \mathcal{N}$.

Corollary 3.4. For all divisors, D, of degree $q - 1$, we have that $D \in \mathcal{N}$ if and only if there exists \lt_{p} on $V(G)$ such that $D \sim \nu_{P}$.

PROOF. If $vp - D \sim E$ with $E \ge 0$ then $deg(E) = deg(v_P - D) = 0$ and so $E = 0$ and $D \sim v_p$.

Finally we can prove Theorem 2.2:

PROOF. (of Theorem 2.2) We need to show RR1 and RR2 hold. Assume $D \in Div(G)$ with $r(D) \geq 0$. For all $v \in \mathcal{N}$ we have $r(v - D) = -1$ and so $|D| \neq \emptyset$ and $|v - D| = \emptyset$. So RR1 holds.

On the other hand if $r(D) = -1$, then by [3.3], have $r(v_p - D) \ge 0$ for some $\langle P \rangle$, and then $|D| = \emptyset$ and $|\nu_P - D| \neq \emptyset$. Since $\nu_P \in \mathcal{N}$, so RR1 holds.

For RR2 it suffice to show that for all $D\in\mathcal{N}$ we have $K-D\in\mathcal{N}.$ By [3.4] we have $D \sim v_p$ for some order < p. Define < ϕ by $v \leq Q$ $w \Leftrightarrow w < p v$, i.e. the reverse of *P*. Then for every *v* we have

$$
v_P(v) + v_Q(v) = |\{e = vw \mid w <_P v\}| - 1
$$
\n
$$
+ |\{e = vw \mid w <_Q v\}| - 1
$$
\n
$$
= \deg(v) - 2 = K(v).
$$
\nSo $v_Q = K - v_P$ and so $K - D \sim K - v_P = v_Q \in \mathcal{N}$

4 APPLICATIONS

This theory and the Riemann-Roch for graphs have many applications in various fields. One example is that we can give a profound proof of the classic Kirchhoff's Theorem:

Theorem 4.1 (Kirchoff's Theorem). The number of spanning trees of a graph G is equal to any cofactor of the Laplacian of G .

First we must define break divisors: A break divisor, D, on a graph, G , is an effective divisor of degree $g(G)$ such that D restricted to any connected subgraph *H* of *G* has the property that deg($D|_H$) $\geq g(H)$. It turns out break divisors have a special connection with spanning trees and the picard groups:

Theorem 4.2 Let g be the genus of G . Then every degree g divisor is equivalent to a unique break divisor. Thus the set of break divisors on G is canonically in bijection with $Pic^g(G)$

Since $|Pic^0(G)| = |Pic^0(G)|$ and the size of $Pic^0(G)$ is exactly the number of spanning trees, we see that the number of break divisors on G equals the number of spanning trees of $G!$

Finally, before stating the theorem, we need to talk about tropical curves:

A tropical curve (or metric graph), Γ can be obtained from a graph *G* by assigning an edge-length $\ell(e) \in \mathbb{R}$ to each edge $e \in E(G)$, and identifying e with the obvious line segment of that length.

Divisors on tropical curves are of the form $\sum_{p\in\Gamma}a_p(p)$, with only finitely many $a_p \in \mathbb{Z}$ non-zero and p allowed to be anywhere along any edge.

Let $f : \Gamma \to \mathbb{R}$ be any tropical rational function: a piecewise linear function with only finitely many pieces, each having integer slope. A principal divisor, $\text{div}(f)$ is then given as $\text{div}(f) = \sum_{p \in \Gamma} \text{ord}_p(f)(p)$, with ord $p(f)$ being minus the sum of the outgoing slopes of f emanating from p .

We define $Pic^{n}(\Gamma)$ in exactly the same way as for graphs:

$$
Picn(\Gamma) = Divn(\Gamma)/Prin(\Gamma)
$$

Now Pic⁰ is no longer finite group but rather a real *q*-dimensional torus.

Similarly to graphs, we can also define break divisors on a tropical curve, Γ. A break divisor on Γ is an effective divisor, D , of degree g such that D restricted to any closed connected subgraph Γ' has degree at least that of the genus of Γ ′ . Once again it can be shown that there is a bijection between the break divisors of Γ and Pic^{g}(Γ).

Furthermore, one has that D is a break divisor on Γ if and only if there exists a spanning tree T of G and an enumeration $e_1^{\circ},...,e_q^{\circ}$ of $\Gamma \backslash T$ such that $D = (p_1) + \cdots + (p_g)$ with each $p_i \in e_i$ (where e_i° are the open edge of e_i (i.e. endpoints removed)). For a tree T, let B_T be the set of all divisors, $(p_1) + \cdots + (p_g)$, defined as above. Finally let $C_T \subset \text{Pic}^g(T)$ be the image of B_T under the map $D \mapsto [D]$, sending D to it's linear equivalence class. Then we have the following:

Theorem 4.3 We have that $Pic^g(\Gamma) = \bigcup_{T \in \mathcal{T}} C_T$, where \mathcal{T} is the set of all spanning trees of G. Furthermore, each $C_T \subset Pic^g(\Gamma)$ is a parallelotope with their relative interior disjoint.

What's more there is a natural metric on $Pic^g(\Gamma)$ for which vol $(C_T) = \prod_{e \notin T} \ell(e)$ and the volume of Pic^G(Γ) is naturally related to the determinant of the Laplacian of G , from which one can recover Kirchoff's theorem!

5 QUICK EXAMPLE

Let Γ be the metric graph consisting of 2 vertices connected by 3 edges of length, 2, 1 and 2. We can fix a model, G , for Γ in which all edges have length 1:

Fig. 1. Model for Γ

This has the following spanning trees:

Fig. 2. Spanning trees of G

And the cell decomposition looks as follows:

Fig. 3. Cell decomposition

Riemann-Roch on graphs, debt games and applications