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Introduction

This micro paper is a very brief introduction to the basics of Lyusternik-Schnirelmann
theory which concerns closed geodesics:

Definition 1. A closed geodesic in a Riemannian manifold, M , is a non-constant geodesic
segment c : [0, 1] → M such that c(0) = c(1) and c′(0) = c′(1).

The main theorem of closed geodesics which will be the main target of this paper is stated
as follows:

Theorem 1 (Lyusternik-Fet Theorem). On every compact Riemannian manifold without
boundary, there exists a closed geodesic.

Closed geodesics are of particular interest because closed geodesics of period 1 are exactly
the critical points of the energy functional E : ΛM → R given by:

E(c) =
1

2

∫ 1

0

|ċ|2dt,

where ΛM is the space of smooth 1-periodic curves on M . Note that any closed curve of
period p can reparametrized to a critical point via t → γ(pt). We will later see that we make
heavy use of the energy functional in the proof of Lyusternik-Fet.

For brevity we omit some of the proofs, but they can be found in Klingenberg [1], which
is also the main source of this exposition which we follow closely.

Theory and proof

Let S = [0, 1]/{0, 1}. We may define a metric on the space of closed continuous curves,
C0(S,M), on M , by

d∞(c, c′) = sup
t

d(c(t), c′(t))

Let PM ⊆ C0(S,M) be the subspace of piecewise differentiable closed curves. On this we
may define the length functional and the energy functional (as seen before)

L(c) =

∫ 1

0

|ċ|dt and E(c) =
1

2

∫ 1

0

|ċ|2dt,

where c ∈ PM . Note that L(c) ≤
√

2E(c), with equality if L(c|[0,t]) = tL(c) (since in that
case c moves with constant velocity 1).

By compactness, there is an η > 0 such that any p, q with d(p, q) ≤ 2η can be joined by a
unique geodesic, cpq : [0, 1] → M such that L(cpq) =

√
2E(cpq) = d(p, q).
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Proposition 1. Let {cn} be a sequence of piecewise differentiable paths in M with d(pn, qn) ≤
η, where cn(0) = pn, cn(1) = qn. If the sequences {E(cn)} and {d2(pn, qn)/2} are both con-
vergent with the same limit, then there is a convergent subsequence of {cn} whose limit is a
geodesic segment, c, of length equal to d(c(0), c(1)) ≤ η.

Proof. Omitted.

We now fix κ > 0 and choose k ∈ 2N such that 4κ/k ≤ η2. We have the subspace
P κM := {c ∈ PM | E(c) ≤ κ}, and for every c ∈ P κM and t0 ∈ S we have

d2(c(t0), c(t0 + 2/k)) ≤ 2E(c),

when 2/k ≤ η2.
We now let 0 ≤ j ≤ k − 2 be even integer, and for σ ∈ [j/k, (j + 2)/k] we define Dσc by

Dσc(t) = c(t), for t ∈ [0, j/k] or t ∈ [σ, 1]

Dσc|[j/k,σ] = cpq|[j/k,σ]
where cpq is the minimizing geodesic from p = c(j/k) to q = c(σ), which exists since by
construction d(c(j/k), c(σ)) ≤ η. Visually we replace a segment of c by the minimizing
geodesic between the boundary points of said segment.

To define Dσc for σ ∈ [1, 2] we let j be as before and take t ∈ [1, 1 + 1/k] to mean
t ∈ [0, 1/k]. Then for σ ∈ [1 + j/k, 1 + (j + 2)/k] we set

Dσc(t) = c(t), for t ∈ [1/k, (j + 1)/k] or t ∈ [σ − 1 + 1/k, 1 + 1/k],

Dσc|[(j+1)/k,σ−1+1/k] = cpq|[(j+1)/k,σ−1+1/k].

with p = c((j + 1)/k), q = c(σ− 1 + 1/k) and cpq the minimizing geodesic. Again, we replace
a segment by a minimizing geodesic.

We then have the following definition and proposition:

Proposition 2. Define the deformation D : [0, 2]×P κM → P κM to be the mapping given by
subsequent application, D2/k, ...,D2l/k,Dσ, of Dσ, with l the largest integer such that 2l ≤ kσ.

Then D is continuous and E(D(2, c)) ≤ E(c), with equality if and only if c is constant or
a closed geodesic.

Proof. Omitted.

Thus D iteratively replaces segments of the geodesic by minimizing geodesics of between
the boundary of the segments.

We now lay out two Lemmas before we attack the main theorem:

Lemma 1. Let {cn} be a sequence in P κM such that {E(cn)} and {E(D(2, cn))} are conver-
gent with same limit, κ0 > 0. Then there is a convergent subsequence of {cn} whose limit is
a closed geodesic, c0, with E(c0) = κ0.
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Proof. Choose k as before so that D is defined. By construction D(2, cn) consists of the k/2
geodesic segments Dcn|[(j+1)/k,(j+3)/k] for j = 0, 2, ..., k − 2.

Applying proposition 1 to the sequence {D(2, cn)} we obstain a subsequence with limit,
c0, which consists of k/2 geodesic segments. Proposition 1 also implies {cn} converges to the
same c0, and so by assumption E(D(2, c0)) = E(c0) = κ0 > 0, which by proposition 2 implies
that c0 is a closed geodesic (and not constant since κ0 ̸= 0).

Lemma 2. Let κ0 > 0 and U ⊂ P κ0M an open neighborhood of the set, C, of closed geodesics
whose energy functional equals κ0. If C = ∅ we may let U = ∅.

Let κ > κ0, then there exists ε (dependent on U) such that D(2, P κ0+εM) ⊆ U ∪ P κ0−εM .

Proof. Clearly D(2,−)|C = id and since D continuous, there is an open neighborhood U ′ ⊂ U
of C such that D(U ′, 2) ⊂ U . Assume for contradiction ε didn’t exist. Then there would exist
a sequence {cn} with cn /∈ U ′ and

κ0 − 1
n
≤ E(D(2, cn)) ≤ E(cn) ≤ κ+ 1

n

which means, by lemma 1, that {cn} has a subsequence which converges to a closed geodesic,
c0, with E(c0) = κ0. But since cn /∈ U ′ we have c0 /∈ U ′, which is a contradiction since c0 is a
closed geodesic and so contained in C ⊂ U ′.

If there is no closed geodesic, c such that E(c) = κ0, then Lemma 1 tells us that there is
a λ > 0 such that there is no closed geodesic, c′, such that E(c′) ∈ [κ0 − λ, κo + λ].

Theorem 2 (Lyusternik-Fet Theorem). On every compact Riemannian manifold without
boundary, M , there exists a closed geodesic.

Proof. First assume the first fundamental group π1(M) is non-zero. Then we may choose
a non-contractable c ∈ PM . Let P ′M denote the space consisting of c′ ∈ PM which are
freely homotopic to c. Set κ′ = inf E|P ′M . We then have that κ′ > 0. Indeed, assume for
contradiction κ′ = 0 then since E(c′) is bounded by κ′ we would have L(c′) ≤

√
2E(c′) < η.

I.e. c′ is a closed curve of length < η, which is, by choice of η, always contractable, which is
in contradiction to the definition of c′.

Assume for contradiction that the set C ′ of closed geodesics with E(c′) = κ′ is empty.
Then by Lemma 2 we have U = ∅ and ε > 0 such that D(2, P κ′+ε) ⊂ P κ′−ε. But since
D(2,−) maps P κ′

M into itself this is in contradiction with the minimality of κ′. Thus C ′ is
non-empty and so there exists a closed geodesic.

Next assume that π1(M) = 0. It’s a fact from algebraic topology that on a compact
manifold (without boundary) at least one homotopy group is non-zero. Thus choose smallest
k such that πk+1(M) ̸= 0. Let f : Sk+1 → M be a non-null homotopic differentiable map.
This map induces a continuous map

F : Dk → PM

by the following description: Identify Dk with the half-equator, {x ∈ Sk+1 | x0 ≥ 0, x1 = 1},
of Sk+1 and associate to each p ∈ Dk ⊂ Sk+1 the parametrized circle ap(t), starting from
p orthogonally to the hyperplane, {x ∈ Sk+1 | x1 = 0}, going into the half-sphere {x ∈
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Sk+1 | x1 ≥ 0}. We then define F (p) = f ◦ ap. Note that p ∈ ∂Dk, then ap is constant with
ap(t) = p.

We now consider a homotopy of F,

Φ : [0, 1]×Dk → PM

with Φ(0,−) = F . This homotopy of F determines a homotopy, ϕ, of f (with ϕ(0,−) = f)
such that F (ϕ(t,−)) = Φ(t,−)(f).

Indeed, since any q ∈ Sk+1 can be written as q = ap(t) for some t ∈ S and p ∈ Dk, we
may put

ϕ(σ, q) = ϕ(σ, ap(t)) = Φ(σ, p)(t),

where we use Φ(0, p) = F (p) = f ◦ ap = ϕ(0,−) ◦ ap, which holds not only for σ = 0 but any
σ, i.e. Φ(σ, p) = ϕ(σ, ap). In particular, if F is null-homotopic, then f is also null-homotopic.

There exists a κ > 0 such that E|F (Dk) < κ and we choose k ∈ 2N such that 4κ/k ≤ η2.
Consider now the n-time repeated application of D(2,−) on F (Dk) denoted by Dn(2, F (Dk)),
and the limit

κ0 = lim
n→∞

maxE|Dn(2,F (Dk))

We want to show κ0 > 0, so assume for contradiction that κ0 = 0. As before we have
that κ0 = 0 implies that L|Dn(2,F (Dk)) ≤

√
2E|Dn(2,F (Dk)) < η. I.e. for any p ∈ Dk we have

that Dn(2, F (p)) is a closed curve of length < η, which is, by choice of η, always contractable.
Hence we have that F is homotopic to a map F ∗ with F ∗(Dk) ⊂ P 0M , which implies that F
is homotopic to a constant map with image a single point in P 0M (which can be identified
with M). Thus also f must be homotopic to a constant map, which is in contradiction to the
definition of f . So we must have κ0 > 0.

Finally assume for contradiction that the set C ′ of closed geodesics wth E(c′) = κ0 is
empty. Then by Lemma 2 we have U = 0 and ε > 0 such that D(2, P κ0+εM) ⊂ P κ0−εM ,
which is in contradiction to the definition of κ0. Hence C ′ is non-empty and there exists a
closed geodesic.

In fact, in the case with π1(M) ̸= 0 any element of π1 can be represented by a closed
geodesic, as shown in Lee [2].

Note also that the condition that M has no boundary is nessecary for the proof since, for
example, the disk, Dn, has πk(D

n) = 0 for all k > 0.
One could continue expanding the Lyusternik-Schnirelmann theory to prove the theorem

of Lyusternik and Schnirelmann (also know as the Theorem of Three Geodesics):

Theorem 3 (Theorem of Three Geodesics). On the 2-dimensional sphere with an arbitrary
Riemannian metric, there exists three closed geodesics without self-intersections.

(Note that a triaxial ellipsoid with all axes having approximately the same length will
have no more than three such geodesics, meaning that in general no more than three such
geodesics can be found).

However the proof of this fact is quite a bit more cumbersome, but can be found in [1].
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